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Abstract 

EEG (electroencephalography) is an important tool for brain death determination 

and seizure detection. In this thesis, patientsô EEG analysis and online diagnostic 

system are studied. 

Brain death is defined as the complete, irreversible and permanent loss of brain and 

brain-stem functions. Many countries have established the criteria of BDD (brain 

death determination). The criteria of BDD in Japan includes: (1) deep coma; (2) pupil 

dilatation; (3) disappearance of brainstem reflex; (4) disappearance of spontaneous 

breathing; (5) flat EEG. In order to avoid the risks existed in the test of disappearance 

of spontaneous breathing and the risk caused by long time of brain death 

determination, the EEG preliminary examination system was introduced. In this thesis, 

coma and brain-death patientsô EEG energy features in EEG preliminary examination 

system were analyzed. 

Both EMD (empirical mode decomposition) and MEMD (multivariate empirical 

mode decomposition) can be used to compute EEG energy features. But EMD is not 

capable to process multi-channel signals. And though MEMD can be used to analyze 

multi-channel signals, computational complexity is increased as it is necessary to 

project signals onto a hyperplane during analysis. So 2T-EMD (turning tangent 

empirical mode decomposition) is proposed. Compared with the MEMD, the 

2T-EMD method analyzes the signal without projecting the signal on the hyperplane, 

which reduces the computational complexity. In order to illustrate the optimality of 

2T-EMD, the three algorithms EMD, MEMD, and 2T-EMD were compared from 

algorithm principle and experiment, in which the experiments were based on standard 

artificial signals and patientsô EEG respectively. The final result verifies the 
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optimality of 2T-EMD in three EEG energy calculation algorithms. Then coma and 

brain-death patientsô EEG energy are computed by using Dynamic 2T-EMD. 

Hereafter the EEG energy features are analyzed by descriptive statistics to get EEG 

energy differences between coma patientsô EEG and brain-death patientsô EEG. 

Results show that EEG energy in coma state is higher than EEG energy in brain-death. 

Moreover, the EEG energy distribution is more dispersed. 

 Epilepsy is a chronic disease, which is transient brain dysfunction caused by the 

sudden and intense electrical excitement of brain neurons. It is one of the most 

frequent neurological diseases. EEG examination is important examination in the 

diagnosis of epilepsy. Currently, the clinical diagnosis of epilepsy is basically based 

on the doctor's own clinical experience, using visual detection to find "epileptic 

waves" from continuous EEG. Due to the uncertainty of the seizure, long-term 

detection of the subject is necessary, which leads to disadvantages such as long 

manual detection and low efficiency. Therefore it is necessary to apply signal 

processing methods for automatic detection of epilepsy EEG in the diagnosis of 

epilepsy. In this thesis, PAC (phase-amplitude coupling) was used to detect seizures. 

  Phase-amplitude coupling is explained as that the high-frequency amplitude is 

modulated by the low-frequency phase. Based on the Bonn dataset, the coupling 

features between the low frequency phase and the high frequency amplitude of EEG 

in seizures and EEG in seizure-free interval were analyzed. And then these PAC 

strength features are classified by SVM (support vector machine). Hereafter, the 

classification results are presented by using ROC with CV (receiver operating curve 

with cross validation). Results showed that there existed a strong coupling strength of 

EEG in the seizure period between the theta band and the gamma band. 

  Since the above studies are based on offline data, it is inconvenient to provide 
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doctors timely analysis reference. In this paper, the online diagnosis system is 

proposed. The online system is developed based on API (Application Programming 

Interface) of g.tec. The system consists of a laptop and an EEG recording device. 

  Finally, we develop the API (Application Programming Interface) between EEG 

recording device and EEG analysis software. By using the developed API, online data 

streams can be transferred from EEG recording device to the EEG analysis software, 

thereby realize the function of online EEG recording and online EEG analysis. 

Furthermore, a warning function is added when the analysis result is larger than a 

preset threshold value, which can remind the doctor timely to take appropriate 

medical treatment to the patient. In future research more efficient algorithms to 

analyze EEG will be developed and the system performance will be improved. 

Specifically, the thesis is divided into five Chapters. Chapter 1 is the research 

background and purpose. Chapter 2 is the EEG analysis for brain death determination. 

This chapter illustrates the proposed Dynamic 2T-EMD algorithm, and the results 

analyzed by using Dynamic 2T-EMD and statistical analysis method. Chapter 3 is the 

EEG analysis for seizure detection. This chapter illustrates PAC method was used to 

extract coupling features between low phase frequency and high amplitude frequency 

for seizure detection. Chapter 4 is the realization of online EEG diagnostic system. 

This chapter illustrates the composition and realization of the system. Chapter 5 is the 

conclusions and future work. 
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Chapter 1 Introduction 

1.1 Background of Coma and Brain-Death EEG Analysis 

The concept of brain death was first proposed by Mollaret and Goulon in 1959 and 

then constantly being corrected [1]. In 1968, the Ad Hoc Committee of the Harvard 

Medical School to Examine the Definition of Brain Death proposed the definition of 

irreversible of coma, also known as the Harvard criteria, which is the first diagnostic 

criteria of brain death in human history [2]. From then on, there is a strict definition of 

brain death in medicine and law, which is the complete, irreversible and permanent 

loss of brain and brain-stem functions. Hereafter, many countries have established the 

determination criteria of brain death based on the definition [3]. For examplĕ the 

criteria of brain death determination in Japan is as shown below. 

(1) Coma test.  

(2) Pupils test. Both sides of pupils dilate more than 4mm and pupils fixation. 

(3) Brainstem reflexes test. It includes the test of pupils light reflection, corneal reflex, 

ciliary spinal reflex, oculocephalic reflex, vestibular reflex, swallow reflex and cough 

reflex. 

(4) Apnea test. The patients lost spontaneous breathing function without connecting 

the ventilator.  

(5) EEG confirmatory test. There is no EEG higher than 2‘ὠ.  

The above steps are needed to check twice, and the interval of duration between the 

two checks is not less than 6 hours. 

So there may exist two risks in the above mentioned criteria of brain death 

determination. One risk is that it takes long time of the checks since the EEG 

recording required for 30 minutes and the interval of duration between the two checks 
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is more than 6 hours. The other risk exists in apnea test as the apnea test requires close 

monitoring of the patient under the circumstance that all ventilator support is 

temporarily removed and PaCO2 (Pressure of carbondioxide) levels are allowed to 

rise [4]. Based on the risks explained above, an EEG preliminary examination system 

between the brainstem reflex test and apnea test for the brain death determination was 

introduced [5]. The establishment of this preliminary system is helpful to reduce 

clinical risk and prevent clinical misjudgment.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1 Procedures of EEG preliminary examination based on brain death determination. 

The procedure of EEG preliminary examination based on brain death determination 

is described in figure 1.1. In details, in the procedures of EEG preliminary 

examination, patients in quasi-brain-death state are conducted coma test, pupil test 

and brainstem reflex test firstly. Then the procedure of EEG preliminary examination 

is introduced to evaluate whether the patient has an obvious rhythmic EEG. If exists, 

the procedures stop and further medical assistance is provided timely to the patient 

according to the patientôs condition. On the contrary, if there is no brain activity, the 

procedures of brain death determination are conducted continuously. So in order to 

provide the accurate preliminary diagnosis in the EEG preliminary examination, it is 
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necessary to develop advanced EEG signal processing algorithms. This is also the 

purpose of the first part in the thesis. 

Several EEG analysis algorithms were applied to analyze quasi-brain-death state 

patientsô EEG by extracting different features such as energy and complexity. In this 

thesis, we mainly focus on the algorithms development based on EEG energy features. 

EMD-based algorithms, as fully data driven algorithms, can be used to analyze 

nonlinear and nonstationary signals and compute EEG energy of signal at any time to 

avoid the loss of signal information. In related work, EMD was applied to process 

quasi-brain-death patientsô EEG and good results were obtained in terms of EEG 

energy to distinguish between coma and brain death [6]. But EMD canôt be used to 

analyze multivariate EEG signals. So MEMD was introduced [7]. Dynamic MEMD 

was proposed as it was difficult to display the EEG energy fluctuation over time for 

the results analyzed by static EMD-based results [8]. However, it was needed to 

project the multivariate signals to the hyperplane for Dynamic MEMD algorithm, 

which resulted in a large amount of computation.  

Therefore, in this thesis, the Dynamic 2T-EMD algorithm is proposed to process 

multi-channel coma and brain-death patientsô EEG, where no signal projection is 

required. Firstly, the dataset used in this part were illustrated. Secondly, principles of 

three static EMD-based (EMD, MEMD, 2T-EMD) algorithms were compared as well 

as the Dynamic 2T-EMD algorithm was explained. Thirdly, experiments for three 

static EMD-based algorithms were conducted to verify the optimal performance of 

2T-EMD from experimental perspective, where the experiments were based on 

standard artificial signals and patientsô EEG. Moreover, EEG energy of 36 cases of 

coma and brain-death patientsô EEG were computed by Dynamic 2T-EMD from 

overall aspect. At the same time, two typical patientsô EEG who were in coma state 
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and brain-death state respectively as well as one special patientôs EEG who was from 

coma to brain-death were also analyzed by Dynamic 2T-EMD to obtain EEG energy 

features from individual aspect. Finally, the EEG energy features were analyzed by 

descriptive statistical method. Final results showed that there existed significant 

differences of EEG energy between coma EEG and brain-death EEG. In detail, the 

EEG energy in coma state was higher than EEG energy in brain-death state, and the 

EEG energy distribution of coma patientsô EEG was more dispersed than that of 

brain-death patientsô EEG. 

1.2 Background of Epilepsy EEG Analysis 

The International League Against Epilepsy (ILAE) formulated conceptual 

definitions of seizure and epilepsy in 2005, that is, an epileptic seizure is defined as a 

transient occurrence of signs and/or symptoms due to abnormal excessive or 

synchronous neuronal activity in the brain by the International League Against 

Epilepsy (ILAE), as well as epilepsy is a disorder of the brain characterized by an 

enduring predisposition to generate epileptic seizures, and by the neurobiological, 

cognitive, psychological, and social consequences of this condition. Moreover, the 

definition of epilepsy requires the occurrence of at least one epilepsy seizure [9]. 

Epilepsy is a common complex spectrum disorder that can affect individuals of all 

ages [10]. Approximately 50 million people worldwide have epilepsy, making it the 

most common neurological disease globally [11, 12]. Epilepsy is characterized by 

unpredictable seizures, which influence the quality of life for patients and their 

families. Long-term anti-epileptic drugs therapy is the one form of treatment, up to 

70% of people could have their seizures fully controlled with appropriate drugs 

therapy [13, 14]. For patients of drug-resistance epilepsy, epilepsy surgery is the 

primary treatment [15, 16]. Around 70% of people (7 in 10 people) who have 
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temporal lobe surgery find that the surgery stops their seizures [17]. The success of 

epilepsy surgery is directly related the location and resect or disconnect accurately the 

epileptogenic cortex [18]. There are some tools to be used currently in the location 

and characterization of seizures, such as single photon emission computed 

tomography/position emission tomography scans, magnetic resonance imaging, 

surface or and intracranial EEG recordings [19]. Computed tomography can cause 

damage to the human body. And the cost of magnetic resonance imaging is high, 

which may cause economic burden for patient. Compared with computed tomography 

and magnetic resonance imaging, EEG is the primary diagnostic tool for epilepsy 

because it is harmless to human body with low cost. In this paper, we mainly focus on 

EEG recordings.  

EEG recordings are time-varied non-stationary signals, which are mainly composed 

by basic elements of frequency, amplitude and phase. Currently the clinical diagnosis 

of epilepsy is basically based on the doctor's clinical experience by visually observing 

the patient's EEG. In details, the EEG of a patient with epilepsy appears interictal 

epileptiform discharges, such as EEG spike and EEG sharp waves, which were 

well-recognized hallmarks of epilepsy [20]. However due to the predictable of the 

seizure, long-term detection of the subject is necessary. But this leads to a large 

amount of EEG data, which leads to disadvantages such as long manual detection and 

low efficiency for doctors. In addition, due to the large individual differences in 

seizures, doctors are susceptible to subjective factors when diagnose by visually 

observing EEG. Moreover, some important features of the seizures are difficult to 

observe directly from the EEG, such as high-frequency oscillation characteristics and 

coupling characteristics of EEG. Therefore it is necessary to apply signal processing 

methods for automatic detection of epilepsy EEG in the diagnosis of epilepsy. It will 
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improve detection efficiency and reduce the work pressure for doctors. In this thesis, 

PAC (phase-amplitude coupling) was used to detect coupling features of seizures.  

Phase-amplitude coupling, one type of cross-frequency coupling (CFC), is a 

common method used for analysis of EEG analysis, as it reveals the coupling on 

high-frequency amplitude modulated by low-frequency phase. Some studies have 

shown that coupling is closely related to brain activity. For example, Coupling of high 

frequency oscillation and low frequency oscillation was an important basis for 

completing brain function [21]. And the cross-frequency coupling between theta band 

and gamma band has improved working memory performance [22]. And many studies 

have shown the differences of coupling between epilepsy zone and normal zone. For 

example, research has shown that the phase-amplitude coupling was elevated in the 

seizure-onset zone for the children with medically-intractable epilepsy secondary to 

focal cortical dysplasia [23]. And delta-modulated high-frequency oscillation may 

provide accurate localization of epileptogenic zone by identifying the regions of 

interest for extratemporal lobe patients [24]. Moreover, the phase-amplitude coupling 

in seizure onset zone was higher than normal zone [25]. Furthermore, the 

cross-frequency coupling information can be used to locate the epileptogenic zone 

[26]. In this thesis, in order to identify EEG of seizure activity and EEG of 

seizure-free interval, 5 methods of computing PAC features were introduced to 

analyze the coupling features between low frequency phase and high frequency 

amplitude. Specifically, phase-amplitude coupling features between different low 

frequency oscillation and high frequency oscillation were extracted respectively by 5 

PAC methods. And based on extracted coupling features, the EEG of seizures activity 

and EEG of seizure-free intervals were classified by using support vector machine. 

Afterward, the classification results were evaluated by introducing receiver operating 
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characteristics with k-fold cross-validation. Final results showed that there existed 

obvious coupling features between — band phase and ‎ band amplitude for EEG in 

seizures, with the classification result was up to 0.99 for the EEG of seizures within 

epileptogenic zone and the EEG of seizure-free intervals not in epileptogenic zone. 

And the results analyzed by 5 different methods of computing PAC were close. 

1.3 Thesis Outlines 

In this thesis, we mainly study on the patientsô EEG analysis and propose an online 

EEG diagnostic system. Specifically, there are three parts of content, coma and 

brain-death patientsô EEG analysis by using newly proposed Dynamic 2T-EMD 

algorithm, epilepsy EEG analysis by applying 5 methods of computing PAC, and the 

realization of online EEG diagnostic system. The outlines of this thesis are organized 

as below. 

Chapter 1 illustrates the background of coma and brain-death patientsô EEG 

analysis as well as the background of epilepsy EEG analysis. Firstly, this chapter 

explains the definition of brain death, the criteria of brain death determination, and the 

procedures of EEG preliminary examinations based on brain death determination 

firstly. And it illustrates current research methods of coma and brain-death patientsô 

EEG analysis based on EEG energy features. Then based on the insufficient of existed 

algorithms for extracting EEG energy features in coma and brain-death state, the first 

research content is proposed of this thesis. Secondly, in this chapter, the definition and 

research significance of epilepsy, as well as the current research progress of epilepsy 

EEG analysis based on phase-amplitude coupling are briefly clarified. Then in order 

to detect accurately features of phase-amplitude coupling in seizure activity, the 

second research content is proposed of this thesis.  

Chapter 2 introduces firstly dataset used in this chapter and three static EEG-based 
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algorithms, and compares the three algorithms to get the optimal static algorithm 

based on principle and experiments, in which experiments are based on standard 

artificial signals and patientsô EEG respectively. Then Dynamic 2T-EMD is newly 

proposed based on optimal performance of static 2T-EMD. Hereafter, 36 cases of 

coma and brain-death patientsô EEG are processed by Dynamic 2T-EMD, and the 

results are analyzed by descriptive statistics from 3 group measures. Overall results 

show that there is significant different of EEG energy between coma patientsô EEG 

and brain-death patientsô EEG. 

Chapter 3 describes epilepsy EEG dataset used in this chapter and five algorithms 

of computing phase-amplitude coupling strength firstly. Soon afterwards, the epilepsy 

EEG dataset are processed by five methods of PAC at 9 frequency bands to extract 

PAC strength features respectively. And these PAC strength features are classified by 

using support vector machine according to different PAC computing method and 

different bands in order to obtain the coupling features of seizure activity. The 

classification performance is presented by using k-fold ROC based Cross-Validations. 

Furthermore, phase-amplitude comodulograms measures based on five PAC methods 

are used to provide visual verification of classification results. Results show that there 

exists obvious phase-amplitude coupling strength in EEG during seizure activity at 

— ‎ band, and the classification results is up to 0.96 at band — ‎ within 

epileptogenic zone. Results also show that the accuracy is 0.99 for classify 

seizure-free intervals not in epileptogenic zone and seizures within epileptogenic 

zone.  

Chapter 4 illustrates the realization of online EEG diagnostic system. This chapter 

explains the composition and framework of the system. And the experiment based on 

online calibration signals is described. Results show that the system can realize the 
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function of online recording and online analysis based on existing algorithms. 

Furthermore, the system can also realize the alarm function when the analysis results 

higher than the preset threshold. 

Chapter 5 states the conclusion and future work based the existing content in this 

thesis. For coma and brain-death EEG analysis, the Dynamic 2T-EMD algorithm is 

proposed and used. It is show that compared with brain-death patientsô EEG, the EEG 

energy of coma patientsô EEG is obvious higher. For epilepsy patientsô EEG analysis, 

the five methods of computing PAC strength as well as support machine vector are 

used to process epilepsy EEG during seizure activity and seizure-free intervals. From 

the classification results, there exists stronger coupling strength at — ‎ for patientsô 

EEG of seizure activity. The comodulogram results verify the classification results. 

The above contents are based on offline patientsô EEG, so an online EEG diagnostic 

system is proposed in order to realize the combination of online recording and online 

analysis based on existed algorithms. In future work, deep learning methods will be 

applied in classification of quasi-brain-death patientsô EEG as well as the detection of 

seizure. Moreover, the function of system will be optimized from interactive interface 

and stability.  

1.4 Chapter Summary 

This chapter illustrates the background of coma and brain-death patientsô EEG 

analysis, epilepsy patientsô EEG analysis and the realization of online EEG diagnostic 

system. In addition, the chapter describes the structure of the thesis. 
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Chapter 2 Coma and Brain-Death EEG Analysis 

2.1 Materials 

2.1.1 Standard Artificial Signals 

Since the frequency of coma and brain-death EEG was lower than 40Hz, 80 sets of 

standard artificial signals were selected to test the computational performance of 3 

static EMD-based algorithms. Each of standard artificial signals was composed of a 

low frequency sinusoidal signal of each different frequency and the high frequency 

sinusoidal signal of 100 Hz, in which the frequency range of the low frequency 

sinusoid signals was 0ӱ40Hz and the interval frequency was 0.5Hz. Take a simple 

example shown in figure. 2.1. 

 

 

 

 

 

 

Fig. 2.1 Standard artificial signals. (a) was the low frequency sinusoidal signal of 20Hz, (b) 

was the high frequency sinusoidal signal of 100 Hz, (c) was the standard artificial signals 

composed by (a) and (b). 

2.1.2 Coma and Brain-Death EEG 

The EEG data we used in the paper were recorded in EEG preliminary examination 

in a Chinese hospital from June 2004 to March 2006, with the permission of patients' 
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families [27]. During the EEG recording, patient was lying on the bed in the ICU. And 

the EEG data was detected by the portable NEUROSCAN ESI-64 system and a laptop 

computer. Six exploring electrodes (Fp1, Fp2, F3, F4, F7, F8) as well as one ground 

electrode (GND) were placed on the forehead, and two reference electrodes (A1, A2) 

were placed on earlobes. And the sampling frequency was 1000Hz and the electrode 

resistance was lower than 8KÝ. The placement of electrodes was shown in figure. 2.2. 

In this paper, the EEG of 35 coma and quasi-brain-death patients (male:21; female:14) 

with a total of 36 cases of EEG (coma:19; quasi-brain-death:17), in which there were 

one case of EEG in coma and one case of EEG in quasi-brain-death included in the 

same special patient whose state was from coma state in the first EEG recording 

process to quasi-brain-death state in the second EEG recording process after about 10 

hours.  

 

 

 

 

 

 

 

 

 

Fig. 2.2 The placement of 9 electrodes. 

2.2 Energy Feature Extraction Methods 

2.2.1 Static EMD-Based Algorithms 

Static EMD-based algorithms, EMD, MEMD and 2T-EMD are fully data-driven 

algorithms for multiscale decomposition and time-frequency analysis of real-valued 

signals [28]. The principle of the three algorithms has in common in that, the complex, 
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non-linear and non-stationary signal is decomposed into a finite set of IMFs (Intrinsic 

Mode Functions) and a monotonic residual signal based on local time feature scale of 

signal. As shown in figure 2.3. Here the IMF must satisfy two conditions, one is the 

number of zero crossing and the number of extrema differing at most by one, and the 

other is that the upper and lower envelopes of the signal are symmetrical. 

As described in formula (2-1), for a real-valued signal ὼὸ, the algorithm principle 

of EMD is to decompose ὼὸ into a finite set of IMFs В ὍὓὊ and a monotonic 

residual signal ὶὸ.  

ὼὸ В ὍὓὊ ὶὸ                     (2-1) 

 

 

 

 

 

Fig. 2.3 Basic Schematic of static EMD-based algorithms. 

The principle flow chart of EMD is shown in figure 2.4. The key of EMD 

algorithm is the computation of local mean of the original signal, which is computed 

by taking the average of upper envelopes and lower envelopes. The envelope is 

obtained by connecting all local extrema through using cubic spline line. Specifically, 

for a single channel signal ὼὸ, extract all local maximum ὼ  and all local 

minimum ὼ , and connect all ὼ  and ὼ  by using cubic spline line 

respectively to get the upper envelope ὒ ὸ and lower envelope ὒ ὸ. Then 

take mean of ὒ ὸ and ὒ ὸ. 
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Fig. 2.4 The principle flow chart of EMD. 

But for multivariate signals, the local extrema may not be defined directly. The 

MEMD algorithm solved this problem by taking signal projections along different 

directions in n-dimensional spaces, and these signal projections are then averaged to 

obtain the local mean. More specifically, for a multivariate signal with n components 

ὺᴆὸ  ὺ ὸȟὺ ὸȟỄὺ ὸ  which is a sequence of n-dimensional 

vectors, and a set of direction vectors ὼᴆ ὼ ȟὼ ȟỄȟὼ  that are along 

the directions given by angels —ᴆ —ȟ—ȟỄ—  on a ὲ ρ sphere, the 

computation of local mean of MEMD algorithm is shown in figure 2.5 [29]. 

Although the MEMD algorithm can be used to decompose multivariate signals, 

with using real-valued projections along multiple directions on hyperspheres in order 

to calculate the local mean of the multivariate signals, which may result in a large 

amount of computation. 
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Fig. 2.5 Flow chart of the computation of local mean for MEMD. 

The 2T-EMD offers the possibility to decompose multi-channel signals without 

projections by redefining and computing the signal mean envelope, and the 

re-definition of the signal mean trend, which is obtained by interpolating between 

barycenter of particular oscillation, or called elementary oscillation. Specifically, the 

key of 2T-EMD is the computation of signal mean trend, which is obtained by 

averaging two envelopes: a first envelope interpolates the even indexed barycenters 

which include signal borders, and a second envelope interpolates the odd indexed 

barycenters which also include signal borders [30]. Moreover, the 2T-EMD can 

process single and multi-channel signals. Let Ó be a class ὅ  function in Ὑ  

domain and differentiable with a continuous first derivative. The sifting procedure of 

computing the signal mean trend is briefly illustrated as Algorithm (1) [31]. And the 

computation flow chart of local mean of 2T-EMD is shown in figure 2.6. 
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Algorithm  1 2T-EMD Algorithm 

1. Defined a time series Ὕᴆί as the tangent vector to Ó and express as:  

ὝᴆίȡὸO ρȟ
Ὠί

Ὠὸ
ὸ  

2. Defined ‌ as the Euclidean inner products of Ὑ  and express as:  

‌ȡὸ O ὰὭά
ᴼ
ộὝᴆὸ ὬȟὝᴆὸ ὬỚ 

Due to the continuity of Euclidean inner product, so ɻ can be expressed as:  

ὸᶅɴ Ὑȟ‌ ὸ ὰὭά
ᴼ
ộὝᴆὸ ὬȟὝᴆὸ ὬỚ 

3. Since Ó is a class ὅ  function, we can get the formula below: 

ὸᶅɴ Ὑȟ ‌ ὸ Ὕᴆὸ ρ
Ὠί

Ὠὸ
ὸ  

Where ᴁϽᴁ refers to the Euclidean norm of both Ὑ  and Ὑ . 

4. Oscillation extremum of function ίὸ is defined as below: 

‍ ὸȡὸO ‍ ὸ
Ὠί

Ὠὸ
ὸ  

5. Take two consecutive oscillation extrema, respectively ὖ ὸȟίὸ   and 

ὖ ὸȟίὸ  , thereby ὓ , the barycenter of the associated elementary 

oscillation is defined as below: 

ὓ
ὸ ὸ

ς
ȟ
ρ

ὸ ὸ
ίὸὨὸ 

6. The mean vector Ὡᴆὸ of signal can be obtained according to the definition.  

In conclusion, there are two aspects of principle differences among EMD, MEMD, 

and 2T-EMD, respectively the number of channels analyzed and the computation 

method of local mean of original signals. The comparison of EMD, MEMD, and 

2T-EMD based on algorithm principle is shown in Table 2-1. 
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Fig. 2.6 Flow chart of the computation of local mean for 2T-EMD. 

Table 2-1 Algorithm Principle Comparison among EMD, MEMD, and 2T-EMD 

 

Method 

 

Similarity  

 

Differences 

Type of signal Computation method of local 

mean 

 

 

EMD Original 

signal 

▼◄ 

 

 

 

╘╜╕░

▪

░

►Ἴ 

(►◄ is 

residual) 

 

 

Single channel 

The local mean is calculated as the 

half sum of the upper and the lower 

envelopes, obtained by interpolating 

between local minima and maxima 

using cubic splines. 

 

MEMD  

 

Multi -channel 

Take signal projections along 

different directions in n-dimensional 

spaces, and averaged corresponding 

projections to obtain the local mean. 

 

 

2T-EMD 

 

Single channel 

and 

multi-channel 

Identify all elementary 

oscillations, compute the barycenter 

of each associated elementary 

oscillations,  and interpolate 

between all these barycenters to 

calculate the signal mean trend. 
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2.2.2 Dynamic 2T-EMD  

In order to observe dynamic changes of EEG energy and reduce the influence by 

noise, Dynamic 2T-EMD is developed by extending 2T-EMD with excellent static 

EEG energy computational performance. As is shown in figure 2.7, a time window 

that the width is Ўὸ and a time step with the width Ў‗ are introduced in the 

Dynamic 2T-EMD algorithm, where Ўὸ and Ў‗ are controllable parameters. With 

the time window sliding along the time axis in a time step, a time step of EEG is 

processed and value is stored. Then steps above are repeated to get the dynamic EEG 

energy features [32].  

 

 

 

 

 

 

 

 

 

 

Fig. 2.7 Schematic diagram of Dynamic 2T-EMD 

 

More specifically, for a multivariate signal with ὲ components ίᴆὯϽ

Ўὸ ίᴆπϽЎὸȟίᴆρϽЎὸȟỄȟίᴆὑϽЎὸ  from Ὕ to Ὕ, where Ὕ Ὕ ὑϽ

Ўὸ. The analysis process of Dynamic 2T-EMD is as shown in Algorithm (2). 
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Algorithm 2  Dynamic 2T-EMD Algorithm 

1. Initialize the number of iteration Ὦ ρ, the number of IMF Ὥ ρ,, and the 

number of time step Ὧ π; and set ὶᴆὯϽЎὸ ίᴆὯϽЎὸ , Ὤᴆȟ ὯϽЎὸ

 ὶᴆὯϽЎὸ.  

2. Compute the barycenter ὓ ȟ ὯϽЎὸ  of random consecutive 

oscillation extrema ὖ  and ὖ  in the period of ὯϽЎὸ, that is 

ὓ ȟ ὯϽЎὸ
ϽЎ ϽЎ

ȟ
ϽЎ ϽЎ

᷿ Ὤᴆȟ ὸὨὸ
ϽЎ

ϽЎ
. 

3. Obtain the signal mean trend Ὡᴆȟ ὯϽЎὸ by interpolating between oscillation 

barycenters of Ὤᴆȟ ὯϽЎὸ. 

4. Subtract Åᴆȟ ËϽЎÔ  from the given signals Ὤᴆȟ ὯϽЎὸ , we define 

ὬᴆȟὯϽЎὸ Ὤᴆȟ ὯϽЎὸ Ὡᴆȟ ὯϽЎὸ. If ὬᴆȟὯϽЎὸ obey the sifting stop 

criteria, define ὍὓὊᴆὯϽЎὸ ὬᴆȟὯϽЎὸ, otherwise repeat the iteration steps 

from (2) to (4). It is worth noting that the stop criteria is using the Cauchy-like 

criteria, more precisely, let Ὠȟ be the Ὥ ὸὬ IMF computed at the Ὦ ὸὬ 

iteration of the sifting process, then the sifting criteria is for instance 90% of 

values 
ȟ ȟ

ȟ
 are lower than 10-2. 

5. Define ὶᴆὯϽЎὸ ὶᴆὯϽЎὸ ὍὓὊᴆὯϽЎὸ, if the result signal is monotonous, 

we can get the decomposition results of signals during ὯϽЎὸ, that is ίᴆὯϽЎὸ

В ὍὓὊᴆὯϽЎὸ ὶᴆὯϽЎὸ, otherwise repeat steps from (2) to (5). 

6. Determine whether the elapsed time ὯϽЎὸ exceeds the end time Ὕ, if it does, 

the process goes to end and the final decomposition result ίᴆὯϽЎὸ

В ὍὓὊᴆὯϽЎὸ ὶᴆὯϽЎὸ ; If it doesn't, moving the time window and 

repeat steps from step2 to step 6. 
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2.3 Results 

2.3.1 Results of Comparison among 3 Static EMD-Based Algorithms  

In this section, EMD, MEMD and 2T-EMD were compared from experimental 

aspect based on standard artificial signals and coma and brain-death patientsô EEG 

respectively, in which signal representation accuracy and computational time were 

compared for standard artificial signals as well as computational time was compared 

based on coma and brain-death patientsô EEG. Here signal representation accuracy 

was denoted by root-mean-square error (RMSE), shown as formula (2-2). RMSE was 

used to measure the deviation of processed value and original value, where N is 

sampling frequency, ὼ is the amplitude of artificial signals after processing by 

algorithms, έ is the amplitude of original standard artificial signals.  

2-3% В ὼ έ                    (2-2) 

A. Results Based on Standard Artificial Signals 

The first part is that EMD, MEMD and 2T-EMD were compared based on standard 

artificial signals. From the content explained in section 2.2.1, we know that EMD 

algorithm and MEMD algorithm can only be used to process single channel signals 

and multi-channel signals respectively, while 2T-EMD can process both single and 

multi-channel signals. So comparison between EMD and 2T-EMD based on single 

channel standard artificial signals, and comparison between MEMD and 2T-EMD 

based on multi-channel standard artificial signals were illustrated respectively. 
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Fig. 2.8 Analysis process of EMD and 2T-EMD based on single channel standard artificial 

signals. The upper panel ŋ was the synthesis process of two sinusoid signals ώρ ίὭὲ ςz

“z ςπzὸ and ώς ίὭὲ ςz “z ρππzὸ; the middle panel o  was the decomposition 

process of EMD, 2T-EMD and their corresponding Fourier Transform process; the lower 

panel ɔ  was the comparison of raw signals and decomposed signals. 

Firstly, EMD and 2T-EMD were used to process the 80 sets of standard artificial 
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signals explained in section 2.1.1. As shown in figure 2.8 was a simple example to 

explain intuitively the analysis process of EMD and 2T-EMD based on standard 

artificial signals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.9 Comparison of operation time and RMSE for EMD and 2T-EMD based on single 

channel standard artificial signals. 

As is shown in the upper panel of figure 2.9, the computational time of 2T-EMD is 

less than 1s and remains the stable duration range of πȢφÓ ͯ πȢψυÓ, while the 

computational time of EMD fluctuates greatly in the range of πȢφÓ ͯ ρȢφÓ, and is 

longer than that of 2T-EMD, even reach twice of 2T-EMD. It takes different 

computation time to decompose signals of different frequencies for EMD algorithm, 

while it almost takes the same computation time for 2T-EMD. And as is shown in the 

lower panel of figure 2.9, the RMSE of EMD is increasing in the range of τȢτυ

ρπ ͯ τȢφωρπ  with the increasing of frequency, while the RMSE of 2T-EMD 

basically remained stable in the range of ςȢςπρπ ͯ σȢπςρπ. So 2T-EMD 
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has better integrated performance in both computational time and the signal 

representation accuracy based on single channel standard artificial signals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.10 Comparison of operation time and RMSE for MEMD and 2T-EMD based on 

multi-channels standard artificial signals. 

Secondly, computational time and RMSE of MEMD and 2T-EMD based on 

multi-channel standard artificial signals were compared. In this comparison, the 

number of multi-channel was set to 6, and the 80 synthetic artificial standard signals 

mentioned in section 2.1.1 were divided into 13 groups, with 6 channels per group 

from low to high frequency. 

B. Results Based on Coma and Brain-Death Patientsô EEG 

In the second part, the computational time of EMD, MEMD and 2T-EMD based on 

patients' EEG explained in section 2.1.2 were compared. And it was also divided into 

two aspects, where one is comparison between EMD and 2T-EMD based on patients' 

EEG of single channel, the other is comparison between MEMD and 2T-EMD based 
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on patients' EEG of multi-channel. 

Firstly, EMD and 2T-EMD are used to analyze 36 cases of patientsô EEG data for 

random single channel. As is shown in figure 2.11, the computational time of 

2T-EMD algorithm is ρȢυÓ ͯςȢπÓ, slightly shorter than that of EMD algorithm, which 

is in the range of ρȢωÓ ͯφȢψÓ. So it takes shorter time to process single channel EEG 

for 2T-EMD compared with EMD. 

 

 

 

 

 

 

 

 

Fig. 2.11 Comparison of operation time for EMD and 2T-EMD based on 36 cases of coma 

and brain-death patientsô EEG. 

 

 

 

 

 

 

 

 

Fig. 2.12 Comparison of operation time for MEMD and 2T-EMD based on 36 cases of coma 

and brain-death patientsô EEG. 

Secondly, MEMD and 2T-EMD were used to decompose the 36 cases of coma and 

brain-death patients' EEG data for 6 channels. As is shown in figure 2.12, the 

operation time of 2T-EMD is only in the range of ρȢφÓ ͯ ςȢςÓ, while that of MEMD 

is up to 1120s and the time is in the range of υωσÓ ͯ ρρςπÓ. It is obvious that the 
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2T-EMD algorithm works much faster than MEMD algorithm for multi-channel EEG. 

In summary, it is obvious that the optimal computational performance of 2T-EMD 

is the best among EMD, MEMD, 2T-EMD for both single and multi-channel signals 

[33]. 

2.3.2 Results of Dynamic 2T-EMD Based on Patientsô EEG  

In this section, the EEG of 35 coma and brain-death patients (male: 21; female: 14) 

with a total of 36 cases of EEG (coma: 19; quasi-brain-death: 17) were processed by 

Dynamic 2T-EMD and descriptive statistics measure, in order to obtain the 

differences of EEG energy between coma patients and brain-death patients. 

Specifically, it was explained from overall and individual aspects. Firstly, in order to 

give an overall dynamic EEG energy distribution results for coma group and 

brain-death group, 60s EEG data were randomly selected from every of 36 cases of 

coma and brain-death EEG, and analyzed by Dynamic 2T-EMD and descriptive 

statistics measure. Secondly, from individual point of view, two typical cases of EEG 

from two different patients who were in coma and brain-death state respectively, and 

one special patient whose EEG was from coma state to brain-death state were 

processed by Dynamic 2T-EMD. 

A. Results for 36 Cases of Coma and Brain-Death Patientsô EEG 

Since coma and brain-death patientsô EEG data were recorded in the ICU, which 

were mixed with complex noise, statistical analysis visual analysis were used to 

analyze the energy data processed by Dynamic 2T-EMD to improve the accuracy and 

reliability of results. In this paper, we focused on visual descriptive statistical analysis 

method. Descriptive statistics are summary statistics that quantitatively describe or 

summarize features of a collection of information [34]. Here basic measures of 

descriptive statistics including measure of central tendency and measure of dispersion 
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were applied to evaluate dynamic energy data obtained, in which mean and median 

were used to describe the central tendency of data set, and standard deviation and 

percentile were introduced to evaluate the dispersion of data set.  

Descriptive statistical analysis was conducted to EEG energy features processed by 

Dynamic 2T-EMD. Specifically, since duration of every case of EEG was different, 

60s EEG data were selected from 19 cases of EEG in coma state and 17 cases of EEG 

in brain-death state to process by using Dynamic 2T-EMD algorithm to extract EEG 

energy features firstly. And EEG energy features obtained were grouped from three 

aspects, which were different cases, different channels, and different states 

respectively. And then the EEG energy features grouped were evaluated by applying 

descriptive statistical analysis. 

There were 4 steps to conduct the experiment measure: 

(1) Select randomly 60s EEG data from 36 cases of coma and quasi-brain-death 

patientsô EEG (coma: 19; quasi-brain-death: 17). Here there were 5 channels of EEG 

data with values equal 0 from 3 cases of EEG invalid. 

(2) Process these EEG data by applying Dynamic 2T-EMD algorithm and 211 

time-energy series (36 cases × 6 channels - 5 invalid series) were obtained. 

(3) Group the 211 time-series according to 3 ways: 

ᵑ Divide the 211 time-series into 36 groups according to 36 cases. 

ᵒ Divide the 211 time-series into 12 groups according to 2 states and 6 channels. 

ᵓ Divide them into 2 groups according to 2 states.  

(4) Analyze time-energy series after grouping by using descriptive statistical analysis, 

in which the mean and median were computed to evaluate the central tendency and 

the standard deviation and quantile were computed to evaluate the dispersion of data. 
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Fig. 2.13 The statistical analysis results of EEG energy for 36 coma and quasi-brain-death 

EEG for average channel. 

a. Static Statistical Results for 36 Cases of Patientsô EEG 

In this part, 211 time-energy series were grouped into 36 set of data based on cases. 

The mean, median, standard deviation and quantile were computed for every case for 

average channel. As shown in figure 2.13(a), it is intuitively observed that the mean 
































































