Study on Patient®EEG Analysis and
Realization of Online Diagnostic System
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Abstract

EEG (electroencephagraphy) is an impaant tool for brain death determination
and seizure detectionn this thesis patient® EEG analysis and online diagnostic
system are studied.

Brain death is defined as themplete, irreversible and permanent loss of brain and
brainstem functions Many countries have established the criteria of BDD (brain
death determination). The criteria of BDD in Japan includes: (1) deep coma; (2) pupil
dilatation; (3) disappearance of brainstem reflex; dgpppearancef spontaneous
breathing; §) flat EEG.In order to avoid the risks existed in the test of disappearance
of spontaneous breathing and the risk caused by long time of brain death
determinationthe EEG preliminary examination system was introdukethis thesis,
coma and braktleah patient8EEG energy features in EEG preliminayamination
system were analyzed.

Both EMD (empirical mode decomposition) and MEMD (multivariate empirical
mode decomposition) can be used to compute EEG energy featurdsMB is not
capable to procesaulti-channel signals. And though MEMD can be usedrtalyze
multi-channel signalscomputational complexity is increased it is necessary to
project signals onto a hyperplane during analySis. 2FEMD (turning tangent
empirical mode decomposition) iproposed.Compared with theMEMD, the
2T-EMD method analyzes the signal without projecting the signal on the hyperplane
which reduces the computational complexitty. order to illustrate the optimality of
2T-EMD, the three algorithm&MD, MEMD, and 2FEMD were comparedrom
algorithm principle and experiment whichthe experiments were based on standard

artificial signals and patiesi EEG respectively The final result verifies the



optimality of 2FEMD in three EEG energy calculation algorithriihien ®ma and
braindeath patients EEG energy are computed by using Dynamic-EMD.
Hereafter the EEG energy features are analyzed by descriptive statistics to get EEG
energy differences between coma pati@mEG and brairdeath patien8EEG.
Results show th&EEG energy in coma state is higher than EEG energy in-Oeath.
Moreover,the EEG energy distribution is more dispersed.

Epilepsy is a chronic disegsehich istransient brain dysfunction caused by the
sudden and intense electrical excitement ofinbreeurons.It is one of the most
frequent neurological diseasdSEG examination is importdnexamination in the
diagnosisof epilepsy.Currently, he clinical diagnosis of epilepsy is basically based
on the doctor's own clinical experience, using Mistetection to find "epileptic
waves" from continuou€EG. Due to the uncertainty of the seizure, ldegnm
detection of the subject is necessamhich leads todisadvantagesuch as long
manual detection and low efficiency. Therefdteis necessary tapply signal
processing methadfor automatic detection of epilepdyEG in the diagnosis of
epilepsy.n this thesis, PAC (phasamplitude coupling) was used to detect seizures.

Phaseamplitude couplingis explainedas that the highfrequency amplitude is
modulated by the lovfrequency phaseBased on the Bonn dataset, the coupling
features between the low frequency phase and the high frequency amplittifl& of
in seizuresand EEG in seizurdree intervalwere analyzedAnd then these PAC
strength featuresre classified by SVM (support vector machine). Hereaftes,
classification results are presented by using ROC with @&éirer operating curve
with cross validation). Bsults showed that theegisteda strong coupling strength of
EEG in the seizureguiod between the theta band and the gamma band.

Since the above studiese based on offline data, it is inconvenient to provide

Vi



doctors timely analysis reference. In this papgbBe online diagnosis systeis
proposed The online system is developedsbd on API(Application Programming
Interface)of g.tec.The system consists of a laptop and an EEG recording device.

Finally, we develop the API (Application Programming Interface) between EEG
recording device and EEG analysis software. By using thelaieed API, online data
streams can be transferred from EEG recording device to the EEG analysis software,
thereby realizethe function of online EEG recording and online EEG analysis.
Furthermore,a warning functions addedwhen the analysis result isrdger than a
preset threshold valuayhich can remindthe doctortimely to take appropriate
medical treatmento the patientIn future research more efficient algorithms to
analyzeEEGwill bedevelomdandthe system performanaosill be improved

Specifially, the thesis is divided into five Chapter€hapter 1 is the research
background and purpose. Chapter 2 is the BR&ysisfor brain death determination.
This chapter illustrates the proposed DynamieERD algorithm, and the results
analyzed by usin@ynamic 2FEMD and statistical analysis method. Chapter 3 is the
EEG analysis for seizure detectidrhis chapter illustrates PA@ethodwas used to
extract coupling features between low phase frequency and high amplitude frequency
for seizure detectionChapter 4 is the realization ohline EEG diagnostic system.
This chapter illustrates the composition aadlizationof the system. Chapter 5 is the

conclusions and future work.
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Chapter 1 Introduction

1.1 Background of Coma and Brain-Death EEGAnalysis

The concept of brain death was first proposed by Mollaret and Goulon in 1959 and
then constantly being correctgt]. In 1968, the Ad Hoc Committee of theaiard
Medical School to Examine the Definition of Brain Death proposed the definition of
irreversible of coma, also known as the Harvard criteria, which is the first diagnostic
criteria of brain death in human histd8}. From then on, there is a stragfinition of
brain death in medicine and law, which is the complete, irreversible and permanent
loss of brain and braistem functionsHereafter, mny countries have established the
determination criteria of brain death based on the defin[BpnFor examplé the
criteria of brain death determinationJapan isas shown below.

(1) Coma test.

(2) Pupils test. Bth sides of pupils dilatmore than 4mm and pupils fixation.

(3) Brainstem reflexes test. It includes the test of pupils light refleatmmeal reflex,

ciliary spinal reflex, oculocephalic reflex, vestibular reflex, swallow reflex and cough
reflex.

(4) Apnea test. The patients lost spontaneous breathing function without connecting
the ventilator.

(5) EEG confirmatory tesfThere is no EEG higdr than2 w.

The above steps are needed to check twice, and the intédialation betweethe
two checks isot less thal hours.

So theremay exist tworisks n the above mentioned criteria of brain death
determination One risk isthat it takes long timeof the checks sinceghe EEG

recording required for 30 minutes and the intenfadurationbetweerthe two checks

1



is more tharb hours The other risk exists iapnea test as ttgnedest requires close
monitoring of the patient under the circumstance thall ventilator support is
temporarily removed and PaG@Pressure of carbondioxide) levels are allowed to
rise[4]. Based on theisks explained aboyan EEG preliminary examinati@ystem
betweerthe brainstem reflex test and apnea test for the besthdleterminatiowas
introduced[5]. The establishment of thipreliminary systemis helpful to reduce

clinical risk and prevent clinical misjudgment.

Coma Test

Pupil Test

[ Bramstem Reflex Test ]

[ EEG Confirmatory Test ]

Fig. 1.1 Procedures of EEG preliminary examinatiased on brain death determination

[ Medical Treatment ]

The procedure of EEG preliminary examination based on brain death determination
is describedin figure 1.1. In details, in the procedures of EEG preliminary
examination, patients in quasiain-death state are conducted coma test, pupil test
and brainstemeflex test firstly. Then the procedure of EEG preliminary examination
is introduced to evaluate whether the patient has an obrhgtlsmic EEG. If exists,
the procedures stop arfidrther medical assistance is providiéaely to the patient
according to thepatients condition. On the contrary, if there is no brain activity, the
procedures of brain death determination are conducted continuously. So in order to

provide the accurate preliminary diagnosis in the EEG preliminary examination, it is
2



necessary to elelop advanced EEG signal processing algorithms. This is also the
purpose of the first part in the thesis.

Several EEG analysis algorithmagere applied to analyze qudsiaindeath state
patient®EEG by extracting different features such as energy amplexity. In this
thesis, we mainly focus on the algorithms development based on EEG energy features.
EMD-based algorithms, as fully data driven algorithman be used toanalyze
nonlinear and nonstationary signals and comgl& energy of signal at anyme to
avoid the loss of signal informatiom related work,EMD was applied to process
guastbraindeath patientsEEG and god resultswere obtainedin terms of EEG
energy to distinguish between coma andrbdeath[6]. But EMD carii be used to
analyz2 multivariate EEG signalSo MEMD was introduced [7]Dynamic MEMD
was proposed as it was difficult thsplaythe EEG energy fluctuation over time for
the results analyzed by static EMiased result$8]. However, it was needed to
project the multivariate signals to the hyperplanier Dynamic MEMD algorithm
whichresuledin a large amount of computation

Therefore, in this thesis, the Dynamic-EMD algorithm is proposetb process
multi-channel coma and bradgeath patienSEEG, whereno signal progction is
required.Firstly, the dataset used in this part were illustrated. Secondly, principles of
three static EMEbased (EMD, MEMD, 2FEMD) algorithms were compared as well
as the Dynamic 2EMD algorithm was explained. Thirdly, experiments for three
static EMD-based algorithms were conducted to verify the optipsformanceof
2T-EMD from experimental perspective, whetlee experiments were based on
standard artificial signals and patiehE=G. Moreover, EEG energy of 36 cases of
coma and brahieath patient® EEG were computed by Dynamic -EMD from

overall aspect. At the same time, two typical pati@BisG who were in coma state



and brainrdeath state respectively as well as one special p&tiERG who was from
coma to brairdeath were also analgd by Dynamic 27EMD to obtain EEG energy
features from individual aspect. Finally, the EEG energy features were analyzed by
descriptive statistical method. Final results showfeat there existed significant
differences of EEGenergybetween coma EEG arataindeath EEG. In detail, the
EEG energy in coma state was higher than EEG energy indeath state, and the
EEG energydistribution of coma patiendEEG was more dispersed thé#mat of

braindeath patienEEG.

1.2 Background of Epilepsy EEGAnNalysis

The International League Against Epilepsy (ILAEprmulated conceptual
definitionsof seizure and epilepsy in 2005, that is,epileptic seizure idefined asa
transient occurrence of signs &md symptoms due to abnormal excessive or
synchronous neonal activity in the brainby the International League Against
Epilepsy (ILAE), as well as éppsy is a disorder of the brain characterized by an
enduring predisposition to generate epileptic seizures, and by the neurobiological,
cognitive, psychologicaland social consequences of this conditibloreover, he
definition of epilepsy requires the oceance of at least one epilepsy seiz{8g
Epilepsy is a common complex spectrum disorder that can affect individuals of all
ages [10]. Approximately 50 nlibn people worldwide have epilepsy, making it the
most common neurological disease globally [11, Edilepsy is characterized by
unpredictable seizures, which influence the quality of life for patients and their
families. Longterm antiepileptic drugstherapy is the one form of treatment, up to
70% of people could have their seizures fully controlled veipropriatedrugs
therapy [13, 14]. For patients of drugsistance epilepsy, epilepsy surgery is the
primary treatment [15, 16]JAround 70% of peoplg7 in 10 people) who have

4



temporal lobe surgery find that the surgery stops their seiflirgsThe success of
epilepsy surgery is directly related the location and resect or disconnect accurately the
epileptogenic cortex [18]. Here are some tools to lsed currentlyn the location
and characterization of seizures, such as single ph&mission computed
tomography/position emission tomography scans, magmesonanceimaging,
surface or and intracrahi&ZEG recordings [19]Computed tomography can use
damage to the human bodgnd the cost ofmagneticresonancamagingis high,
which may causeconomicburden for patient. Compared witbroputed tomography
and magneticresonancemaging EEG is the primary diagnostic tool for epilepsy
because it isdrmless to human body with low cost.this paper, we mainly focus on
EEG recordings.

EEG recordings are timearied nonrstationary signals, which are mainly composed
by basic elements dfequency amplitude and phase. Currenthe clinical diagnosis
of epilepsy is basically based on the doctor's clinical experiepegsually obsening
the patient's EEGIn details, he EEG of a patient with epilepspppearsnterictal
epileptiform dischargessuch as EEG spike and EEG sharp waves, whiere
well-reagnizedhallmarksof epilepy [20]. However die to thepredictableof the
seizure, longerm detection of the subject is necess@wyt thisleads toa large
amount of EEG data, which leads to disadvantageh as long manual detection and
low efficiency for doctors In addition, due to the large individual differences in
seizures, doctors are susceptible to subjective factors when dialgnossually
obsening EEG Moreover,some important features of tlseizuresare difficult to
observe directly fromhe EEG, such as higihequency oscillation characteristics and
coupling characteristicsf EEG Thereforeit is necessary tapply signal processing

method for automatic detection of epilep&EG inthe diagnosis of epilepsit will



improve detection effiency and reduce theork pressurdor doctors In this thesis,
PAC (phaseamplitude coupling) was used to detect coupling features of seizures.
Phaseamplitude coupling, one type of cresquency coupling (CFC), is a
common method used for analysis EEG analysis, as it reveals the coupling on
high-frequency amplitude modulated by ldvequency phase. Sonsudies have
shown that coupling is closely related to brain actity exampleCoupling ofhigh
frequency oscillation and low frequencyoscillation was an important basis for
completing brain functiof21]. And the crosgrequency coupling between theta band
and gamma bangasimproved working memory performand@2]. And many studies
have shown the differences of coupling between epilepsy adienormal zone. For
example,researchhas shown that the phaamplitude coupling was elevated time
seizureonset zone for thehildren with medicallyintractable epilepsy secondary to
focal cortical dysplasig23]. And deltamodulated higHrequency acillation may
provide accuratdocalization of epileptogenic zone by identifyinthe regions of
interest forextratemporal lobe patienf24]. Moreover, the phasamplitude coupling
in seizure onset zone was high#ran normal zone [25]. Furthermorehd
crossfrequency coupling information can be used to locate the epileptogenic zone
[26]. In this thesis, in order to identify EEG of seizure activity and EEG of
seizurefree interval, 5 methods of computing PAC features were introduced to
analyze the coupig features between low frequency phase and high frequency
amplitude. Specifically phaseamplitude coupling features between different low
frequencyoscillation and high frequency oscillation wenetractedrespectively by 5
PAC methods. And based on exdted coupling features, the EEG of seizures activity
and EEG of seizur&ree intervalswere classified by using support vector machine.

Afterward, the classification results were evaluated by introducing receiver operating



characteristics with #old cros-validation. Finalresultsshowed that there existed
obvious coupling features betweerband phase and band amplitude for EEG in
seizures, with the classification result was up to 0.99 for the EEG of seizures within
epileptogenic zone and the EEG of seizinee intervals not in epileptogenic zone.

And theresultsanalyzed by 5 differanrmethods of computing PAC were close.

1.3 Thesis Outlines

In thisthesis we mainly study orthe patient®EEG analysis and propose an online
EEG diagnostic system. Specifically, there are three parts of comtmmg and
braindeath patient® EEG analys by using newly proposed Dynamic -EMD
algorithm, epilepsy EEG analysis by applying 5 methods of computing PAGhand
realization of online EEG diagnostic systehime outlines of this thesis are organized
as below.

Chapter 1 illustrates the backgroumd coma and brahdeath patienSEEG
analysis as well as the background of epilepsy EEG analysis. Firstly, this chapter
explainsthedefinition of brain deaththe criteria of brain death determination, ahe
procedures of EEG preliminary examinatiorsséd on brain death determination
firstly. And it illustrates current research methods of coma and-desth patients
EEG analysis based on EEG energy features. Then based on the insufficient of existed
algorithms for extracting EEG energy featuresama and brakteath state, the first
research content is proposed of this thesis. Secondly, in this chiaptefinition and
research significance of epilepsy, as well as the current research progress of epilepsy
EEG analysis based on phasaplitude capling are briefly clarified. Then in order
to detect accuratelyeatures of phasamplitude coupling in seizure activjtyhe
second research content is proposed of this thesis.

Chapter 2 introduces firstly dataset used in this chapter and three &&kcaSed

7



algorithms, and compares the three algorithms to get the optimal static algorithm
based on principle and experiments, in which experiments are based on standard
artificial signals and patierd€EG respectively. Then Dynamic -EMD is newly
propogd based on optimal performance of staticEMD. Hereafter, 36 cases of
coma and brahdeath patientsEEG are processed by Dynamic-EWMD, and the
results areanalyzedby descriptive statistics from 3 group measures. Overall results
show that there is gnificant different of EEG energy between coma pat@®aEG
and braindeath patienGEEG.

Chapter 3 describes epilepsy EEG dataset used in this chapter and five algorithms
of computing phasamplitude coupling strength firsti§goon afterwards, the eppsy
EEG dataset are processed by five methods of PAC at 9 frequency bands to extract
PAC strength features respectively. And these PAC strength features are classified by
using support vector machine according to different PAC computing method and
differert bands in order to obtain the coupling features of seizure actiMitg.
classification performance is presented by ugifigld ROC based Crosgalidations.
Furthermore, phasamplitude comodulograms measures based on five PAC methods
are used to providesual verification of classification results. Results shbatthere
exists obvious phasamplitude coupling strength in EEG during seizure activity at
— [ band, andthe classification results is up t0.96 at band— [ within
epileptogenic zoneResults also show that the accuracy is 0.99 for classify
seizurefree intervals notin epileptogenic zone and seizures within epileptogenic
zone.

Chapter 4 llustratesthe realization of online EEG diagnostic systehmis chapter
explainsthe composition and framework of the system. And the experiment based on

online calibration signals is described. Results show that the system can realize the



function of onine recording and online analysis based on existing algorithms.
Furthermorethe system can also realize the alarm function when the analysis results
higher than the preset threshold.

Chapter 5 states the conclusiand future work based the existing conten this
thesis. For coma and braileath EEG analysis, the Dynamic-EMD algorithm is
proposed and used. It is shtlvatcomparedvith braindeath patienEEG, the EEG
energy of coma patier@&EG is obvious higher. For epilepsy pati@iEG analys,
the five methods oftomputingPAC strength as well as support machine vector are
used to process epilepsy EEG during seizure activity and séizeretervals. From
the classification results, there exists stronger coupling stramgth | for patient®
EEG of seizure activityThe comodulogrammesultsverify the classification results.
The above contents are based on offline patiétss, so an online EEG diagnostic
system is proposed in order to realize the combination of onlioediag and online
analysis based on existed algorithms. In future work, deep learning methods will be
applied in classification of quabrain-death patienGEEG as well as the detection of
seizure. Mreover, the function of system will be optimized framteractive interface

and stability.

1.4 Chapter Summary

This chapter illustrateshe background of coma and braileath patienSEEG
analysis, epilepsy patie@SEG analysis and the realization of online EEG diagnostic

system. In addition, the chaptgscribes thetructureof the thesis.



Chapter 2 Coma and Bain-Death EEGAnNalysis

2.1 Materials

2.1.1 Standard Artificial Signals

Since the frequency @oma andraindeath EEGvaslower than 40Hz, 80 sets of
standard artificial signals were selectedtést the computational performance of 3
static EMDbased algorithmsEach of standard artificial sighalgas composedf a
low frequency sinusoidal signal of each different frequencythadhigh frequency
sinusoidal signal of 100 Hzn which the frequencrange of thelow frequency
sinusoid signals wasy@0Hz and the interval frequency was 0.5Hz. Take a simple

example shown in figure. 2.1.
(a) y1 =sin(2%20%1T*t)

1
¢
-El_ 0
<
-1
| (b) y2 = sin(2*100**t)
E
:.E:" 0
<
-1
(©)yl +y2
2
L¥}
E
2 0
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_2 | | | | | | |
0.00 0.05 0.10 0.15 0.20 0.25 0.30
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Fig. 2.1 Standard artificial signals. (a) was thes frequency sinusoidal signal @Hz, (b)
was thehigh frequency sinusoidal signal of 100 Hz) was the standard artificial signals
composed by (a) and (b).
2.1.2 Coma and BrainDeath EEG
The EEG data we used in the paper were recorded in EEG preliminary examination

in a Chinese hospital from June 2004 to Ma2006, with the permission of patients'
10



families[27]. During the EEG recording, patient was lying on the bed in the ICU. And
the EEG data was detected by the portable NEUROSCAMESYstem and a laptop
computer. Six exploring electrodes (Fpl, Fp2, I8, F7,F8) as well as one ground
electrode (GND) were placed on the forehead, and two reference electrodes (Al, A2)
were placed on earlobes. And the sampling frequency was 1000Hz and the electrode
resistance wa Sheplasement of ¢ldoteawsa8skon irfigure. 2.2

In this paper, the EEG of 35 coma and qumain-death patients (male:21; female:14)
with a total of 36 cases of EEG (coma:19; gumsindeath:17), in which there were

one case of EEG in coma and one case of EEG in-Quaisideath included in the
same special patient whose state was from cesmatein the first EEG recording
process to quaddrain-death state in the second EEG recording processaditert10

hours.

Nasion

- @
@ @ Pre-auricular point
Left ear@ @ Right ear

Inion

Fig. 2.2 The placement of 9 electrodes.

2.2 Energy Feature Extraction Methods

2.2.1 Static EMD-BasedAlgorithms
Static EMDbased algorithmsEMD, MEMD and 2FEMD are fully datadriven
algorithms for multiscale decomposition and tHreguency analysis of reahlued

signals[28]. The principle of the tlge algorithms has in commanthat, the complex,
11



nontlinearand nonrstationary signal is decomposed into a finite set of IMRsinsic
Mode Functios) and a monotonic residual sigrsed on local timieaturescale of
signal As shown in figure 2.3derethe IMF must satisfy two conditions, one is the
number of zero crossing and the number of extrema differing at most by one, and the
other is that the upper and lower envelopes of the signal are symmetrical.

As described in formula ¢2), for a realvalued signalw 0 , the algorithm principle
of EMD is to decomposev 0 into afinite set of IMFsB ~ "O0 "Gnd a monotonic
residual signali o .

w6 B OO 0Oi o (2-1)

Original signal

‘ EMD. MEMD. 2T-EMD

i
Frequency: High Low Residual
| Y )
IMFs
Fig. 2.3Basic Schematic of dia EMD-based algorithms

The principle flow chart of EMD istown in figure 2.4. The key of EMD
algorithm is the computation of local mean of the original signal, which is computed
by taking the average of upper envelopes and lower envelophs. envelopes
obtained by connecting dihcal extremahrough using cubic spline lin8pecifically,
for a single channel signab 6, extract all local maximunw and all local
minimum ® , and connect allw and by using cubic spline line
respectively to get the upper envelope 0 and lower envelop& 0. Then

take mean ofd 0 and 0 0.

12



i=i+1 Original signals: x(t)
> Initialize:i = 0,7; (t) = x(t),
k=k+1 k=1 hixg1(t) = 1;(t)

[ Identify all local extrema Xy, and Xy, of hy g1 (t) ] I
i |
I

Connect all xp4, and xpp 5, by cubic spline line as the

upper envelope Ly, (t) and lower envelope Ly, i, () I\\
! I\
[ Mean envelope m; 1 (t) :m; j—1(t) = M ] : \\
_______________ =\
[ hi g (8) = hyg—1(£) —my gy (0) ] Computation of local

mean of raw signals

Define: IMF;(t) = h; x(t) ]
ri(t) =1 1(t) — IMF;(t)

Is r; (t) monotonous?

Yes
 Endix(t) = SHIME(D) +1,(8) D

Fig. 2.4The principle flow chart of EMD

But for multivariate signals, the local extrema may not be defined directly. The
MEMD algorithm solved this problem by taking sigrmabjections along different
directions inn-dimensional spaces, and these signal projections are then averaged to

obtain the local meanmMore specifically for amultivariae signalwith n components

~

' Yo) O ol OFE DL O which is a sequence oh-dimensional
vectors and a set of direction vector@ w ho FE ho  that are along
the directions given by angels?- —h—HE — ona & p sphere le

computation of local meaof MEMD algorithmis shown infigure 2.5[29].

Although the MEMD algorithm canbe used tadecompose multivariate signals,
with uang realvalued projections along multiple directions on hyperspheres in order
to calculate the local mean of the multivariate signals, which may result in a large

amount of computation.
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Choose a suitable point set for
sampling on an (n — 1) sphere

Project original signal {#(t)}7_, along the direction ¥ O for

T
a setof k, and obtain the set of projections Ipak (t)}
t=

I

Find the set of time points {tf“ } corresponding

=1

1

Interpolate [te", v (tf ")] to obtain

o K
multivariate envelope {e O (t)}k= L

l

For a set of k direction, the mean

envelope mi(t) = %Zfﬂegk (t)

I I
I I
I I
| I
I I
I I
I I
I I
| I
I I
I I
I I
I — 4T |
: to the maximum of {pek (t}} :
I I
I I
I I
| I
I I
I I
I I
I I
| I
I I
I I
I I

Fig. 2.5 Fbw chart of the computation of local mean K6EMD.

The 2FEMD offers the possibility to decompose mudhiannelsignalswithout
projections by redefining and computing the signal mean envelape the
re-definition of the signal mean trend, which is obtained by interpoldigtgeen
barycenteof particular oscillationpr called elementary oscillatioispecifically, he
key of 2FEMD is the computation of signal mean trend, which is obtained by
averaging two envelopes: a first envelope interpolates the even indexed barycenters
which include signal borders, and a second envelope interpolates the odd indexed
barycenters whit also include signal border8(. Moreover, the 2FEMD can
processsingle and multichannelsignals Let Obe a class® function in 'Y
domain and differentiable with a continuous first derivative. The sifting duveeof
computing the signal mean trend is briefly illustrated\mprithm (1) [31]. And the

computation flow chart of local mean of-EMD is shownm figure 2.6.
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Algorithm 1 2T-EMD Algorithm

1. Defined a time serie§Yi as the tangent vector t0 and express as
¥ po ol ¢
i .0
P Qo
2.Defined| as the Euclidean inner products®f  and express as
| g O doé@'&’ 0 Qfivo QO
Due to the continuity of Euclidean inner product, jso can be expressed:a
bov'Yh o a'@&o QfiYo QO
3.Since Ois a classé function,we can gethe formula bew:
Qi |
—.0
Qo

Where £2 refersto the Euclidean norm of botty and ‘'Y

lov'Yh | o WO p

4. Oscillation extremum of functiom 0 is defined avelow:

CedoT 6 o
0 0 —.0
Qo
5. Take two consecutive oscillation extrema, respectiviely oHh © and
0 oh o6 , therebyd , the barycenter of the associated elemen

oscillation is defined alselow:

. 0O O.
)] i‘p

- i 0Q0

6. The mean vectoi® 0 of signalcan be obtained according to the definition

In conclusionthere are two aspects pfinciple differences mong EMD, MEMD,
and 2FEMD, respectively theaumber of channels analyzeshd the computation
methodof local mean of original signal§.he comparisorof EMD, MEMD, and

2T-EMD based on algorithm principle shown in Tabl&-1.
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Defined oscillation extrema as the
local minima of the f; function:

2

ds
B = || ®

¥

extrema P;, Ps:

LTake two consecutive oscillation J
Py = [ty, s, P, = [ty, s(t)]T

M

e

Compute the barycenter M,, _,, ofthe
1 2z
associated elementary oscillation:

t+t, 1 f
2 ,tz_t1

Ly

Lty

T
S(t)dtl

Obtain the local mean & (t)by interpolating
between oscillation barycenters of s

Fig. 2.6 Fbw chart of the computation of local mean 25rEMD.

Table 21 Algorithm Principle Comparison among EMD, MEMD, and -EMD

Method

Similarity

Differences

Type of signal

Computation method of local

mean

EMD

MEMD

2T-EMD

Original
signal

\A |

I: il =k >"|

(»«ais

residual)

Single channel

The local mean is calculated as {
half sum of the upper and the low
envelopes, obtained by interpolati
between local minima and maxin

using cubic splines.

Multi-channel

Take signal projections alon
different directions in wimensional
spaces,and averagedcorresponding

projectiongto obtain the local mean

Single channel
and

multi-channel

Identify all

oscillations comput the barycente

elementary

of each associated elements

oscillations and interpolat

between all these barycenters

calculatethe signal mean trend
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2.2.2 Dynamic 2T-EMD

In order to observe dynamic changes of EEG energy and reduce the influence by
noise, Dynamic 2FEMD is devebped by extending 2EMD with excellent static
EEG energy computational performance. As is showfigure 2.7 a time window
that the width isY0 and a time step with the widti_ are introducedin the
Dynamic 2FEMD algorithm, whereYo and Y_ are cotrollable parameters. With
the time window sliding along the time axis in a time step, a time step of EEG is
processed and value is stor@tien steps abovare repeated to get the dynamic EEG

energy features [32]

Original EEG signal

= F4 TN == —> ~ AV Sav |
F8 ) a7 1A “ . A e Y %Szc(:’aéc
s . S
18 19 | 20 21 22! 23
i ; Time(s) :
v ‘ v v
\‘Em,m(oﬂ [Epenn (D) [Enran(2)] /
Figure of dynamic EEG energy
EEG energy

Time(s)

Fig. 2.7 Schematic diagram Bfynamic 2FEMD

More specifically, for amultivariate signal with ¢ components b Q0

Yo b TY0 Fip p Vo FE Fp 0 o

from “Y to "Y, where 'Y

Yo. Theanalysisprocess of Dynamic 2EMD is as shown if\Igorithm (2).
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Algorithm 2 Dynamic 2FEMD Algorithm

1.

Initialize the numbr of iteration’Q p, the number of IMFQ p,, and the
number of time stepQ 1 and setb QY0 BPQYO B Q0O

b Q0 .

Compute the barycentet) j QY0 of random consecutiv
oscillation extremad and 0 in the period of Q¥o, that is
0 f QYo hy 5 3794] 0Qo.
Obtain the signal mean trerl; QY0 by interpolating between oscillatic

barycenters of®;, Q0.

Subtract A; EYO from the given signals ® Q0 , we define
B QYo D QYo 6, QYo. If ' QYO obey the sifting stoy
criteria, define 'O0P"MYO "B QY0 , otherwise repeat the iteration ste
from (2) to (4). It is worth noting that the stop criteria is using the Galiké
criteria, more precisely, l1eQ; be the'Q ¢QIMF computed at theQ 6Q
iteration of the sifting process, then the sifting criteria is for instance 90
h h

values are lower than 1.

h
Define b QY0 b QY0 OO, if the result signal is monotonou
we can get the decomposition resuit signas during ‘QY0, that is b ‘QY0
B OP@MYO b Q0O, otherwise repeat step®i (2) to (5).

Determine whether the elapsed tin@yo exceeds the end timeY, if it does,

the process goes to end and the final decomposition resi@Yo
B OP@MYO b QO ; If it doesi't, moving the time window an

repeat steps frorstep2to step 6
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2.3 Results

2.3.1 Results ofComparison among 3Static EMD -BasedAlgorithms

In this section EMD, MEMD and 2TEMD were compared from experimental
aspect based on standard artificial sigremd coma and braideath patientsEEG
respectively in which signal representation accuracy and computational Vi
compared for standard artificial signals as weltasputational timevas compared
based on coma and braieath patien8EEG. Here signal representation accuracy
wasdenoted by roemeansquare error (RMSEshown as formula (2). RMSE was
used to measure the deviation of processed value and original value, Nviere
sampling frequencyw is the amplitude of artificial sigiha after processing by

algorithms, ¢ is the amplitude of original standard artificial signals.

2-3% -B w ¢ (2-2)

A. Results Based on Standard Atrtificial Signals

The first part is thaEMD, MEMD and 2TEMD werecompared based on standard
artificial signals From the contenexplained in section 2.2..ve know that EMD
algorithm anl MEMD algorithm ca only be used t@rocess single channel signals
and multichannel signals respectively, while-EMD can process both single and
multi-channel ginals. So comparison between EMD andEMD based on single
channel standard artificial signals, and comparison between MEMD afdVPT

based on mukchannel standard artificial signalereillustratedrespectively
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Fig. 2.8 Analysis process of EMD and HMD based on single channel standard artificial

signals. The upper panel was the synthesis process of two sinusoid sigdpls i

“z¢m®o andox

Qgz* 2p MO ;

the middle panele

mz

was the decomposition

process of EMD, 2EMD and their corresponding Fourier Transform process; the lower

panel?

was the comparison of raw signals and decomposed signals.

Firstly, EMD and 27JEMD wereused to procesthe 80 sets of standdrartificial



signalsexplained in section 2.1.As shown in figure 2.8 was a simple example to
explain intuitively the analysis process of EMD andEMD based on standard

artificial signals.

Operation Time of EMD and 2T-EMD
T T T

[

T T

Opration Time [t]

20 25 30 35 40

f[Hz]
%107 RMSE of EMD and 2T-EMD
[ T T T

-
-

0 5 10 15 20 25 30 35 40

f[Hz]

Fig. 2.9 Comparison of operation time and RM&E EMD and 2TEMD based on single
channektandardrtificial signals.

As is shown irthe uppempanelof figure 2.9, the computational time of 2EMD is
less than 1s and remains the stable duration rangego® 1@ v, Qwhile the
computational time of ED fluctuates greatly in the range o © p& Oand is
longer than that of 2EMD, even reach twice of 2EMD. It takes different
computationtime to decompos signals of different frequencider EMD algorithm,
while it almost takes the sansemputatio time for 2T-EMD. And as is shown ithe
lower panelof figure 2.9, the RMSE of EMD is increasing in the range af@ v
pTtXx 1& w p 1™ with the increasg of frequency, while th&MSE of 2T-EMD

basically remained stable in the rangec m p m* o8t ¢ p . So2T-EMD
21



has Dbetterintegrated performancen both computationaltime and the signal

representation accurgbased on single channel standard artificial signals

Operation Time of MEMD and 2T-EMD
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Fig. 2.10 Comparison of operation time and RMSE for MEMD aneERID based on
multi-channelsstandardartificial signals.

Secondly, computational timand RMSE of MEMD and 2FEMD basedon
multi-channel standard artificial signalsvere compared In this comparison, the
number of multichannelwasset to 6, and the 8fyntheticartificial standard signals
mentionedin section 2.1..weredivided into 13 groupswith 6 channels per group
from low to high frequency
B. Results Based on Coma and BraDeath PatientSEEG

In the second parthe computational time of EMD, MEMD and -EIMD based on
patients’ EEG explained section 2.1.2 wereompared. And itvasalso divided into
two aspects, wherone is comparison between EMD andEMD based on patients'

EEG of single channel, the other is comparison between MEMD atMIY based
22



on patients' EEG of muithannel.
Firstly, EMD and 27JEMD are used t@nalyze36 casesop at i ent sd6 EEG dat
random single channel. As is shown ifigure 2.11 the computational time of
2T-EMD algorithm is p& © ¢8t Cslightly shorter than that of EMD algorithm, which
is in the range op& © e& OSoit takes shorter time to process single channel EEG

for 2T-EMD campared with EMD.

Operation Time of EMD and 2T-EMD based on EEG
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EMD |
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0 5 10 15 20 30 35
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(==
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Fig. 2.11 Comparison of operation time for EMD andBENWID based on 36 cases of coma

and braindeath patienGEEG.
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Fig. 2.12 Comparison of operation time for MEMD andB2WID based on 36 cases of coma
and braindeath patipt9dEEG.

Secondly, MEMD and 2EMD wereused to decompose the 8&sef coma and
brain-death patients' EEG data fo6 channes. As is shown infigure 2.12, the
operationtime of 2FEMD is only in the range op® © ¢& Qwhile that of MEMD

is up to 11Ps and the time is in the range ofw & @ p ¢.Tit@ obvious that the
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2T-EMD algorithm works much faster than MEMD algorithm for mahianne EEG.
In summary, ti is obvious that the optimalbomputationaperformance of 2EMD
is the best among EMD, MEMD2T-EMD for both single and mukthannelsignals
[33].
2.3.2 Results of Dynamic 2fEMD BasedonPat i ent s EEG
In this section the EEG of 35 coma and braileath patients (mal@l; female:14)
with a total of 36 cases of EEG (coni®; quasibraindeah: 17) were processed by
Dynamic 2FEMD and descriptive statistics measure, in order to obtain the
differences of EEG energy between coma patients and -theaith patients.
Specifically, it was explained from overall and individual aspédsitstly, in orcer to
give an overall dynamicEEG energydistribution results for coma group and
braindeath group, 60s EEG datgere randomly selectefiom every of 36 cases of
coma and brautleath EEG, and analyzed bypynamic 2FEMD and descriptive
statistics measuré&econdly,from individual point of viewtwo typical cases of EEG
from two different patients who were in coma abdaindeath stateespectively, and
one special patient whose EEG wlism coma state to braideath state were
processed bipynamic 2FEMD.
A. Results for 36 Cases of Coma and Braldeath PatientéEEG
Sincecoma and brautleath patienfsSEEG data were recorded in the ICU, which
were mixed with complex noise, statistical analysis visual analysis were used to
analyze the energy data processed bgddyic 2FTEMD to improve the accuracy and
reliability of results. In this paper, we focused on visual descriptive statistical analysis
method. Descriptive statistics are summary statistics that quantitatively describe or
summarize features of a collectior imformation [34]. Here basic measures of

descriptive statistics including measure of central tendency and measure of dispersion
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were applied to evaluate dynamic energy data obtained, in which mean and median
were used to describe the central tendencgath set, and standard deviation and
percentile were introduced to evaluate the dispersion of data set.

Descriptivestatistical analysisvas conductetb EEG energyfeaturegprocessed by
Dynamic 2TEMD. Specifically,since duration of every case of EEGsadifferent,
60s EEG datavere selectefom 19 cases of EEG in coma state and 17 cases of EEG
in braindeath state to process by using DynamieEXD algorithmto extract EEG
energy featurefirstly. And EEG energyfeaturesobtained were grouped from tlere
aspects, which were different cases, different channelsnd different state
respectively And then the EEG enerdgatures groupedere evaluatedoy applying
descriptive statistical analysis

There were 4 steps to conduct the experiment measure:
(1) Sdect randomly 60s EEG data from 36 cases of coma and-hresideath
patient sd EE G-bréiredeathal?7). Here thereqwere $ channels of EEG
data with values equal O from 3 cas¢E£EGinvalid.
(2) Process these EEG data by applying Dynanmii<ElID algorithm and 211
time-energy series (36 cases x6 channddnvalid series) were obtained.
(3) Group the 211 timseries according to 3 ways:
n Divide the 211 timeseries into 36 groups according to 36 cases.
o Divide the 211 timeseries into 12 groups according to 2 states and 6 channels.
> Divide them into 2 groups according to 2 states.
(4) Analyze timeenergy series after grouping by usthgscriptive statistical analysis,
in which the mean and median were computed to evaluate the central tendency and

the standard deviation and quantile were computed to evaluate the dispersion of data

25



Fig. 2.13 The statistical analysis resultsf EEG enegy for 36 coma and quabraindeath
EEG for average channel.
a. Static Statistical Results for 36 Cases of Pati@iEG
In this part, 211 timenergy series were grouped into 36 set of data based on cases.
The mean, median, standard deviation and quaméle computed for every case for

average channel. As shownfigure 2.13a), it is intuitively observed that the mean
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