

- OC. Jutten and J. Herault, (1991) "Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture," Signal Processing, vol. 24, no. 1, pp.1-10, 1.
- P. Comon (1994) "Independent component analysis, a new concept?," Signal Processin, vol. 36, no. 3, pp.287-314.
- J. F. Cardoso and A. Souloumiac (1996): Jacobi angles for simultaneous diagonalizati SIAM J. Mat. Anal. Appl., vol. 17, no. 1, pp.145-151.
- J. F.-Cardoso and B.-Laheld, (1996) "Equivariant adaptive source separation," IEEE Trans. on Signal Processing, vol. 44, no. 12, pp.3017-3030.
 A.T. Bell and T.J. Sejacowski, (1995). "An information maximization approach to blind separation and hid deconvolution." Neural Computation(), vol. 7, no. 6, pp. 1004-1034.
- separation and blind deconvolution," Neural Computation J, vol. 7, no. 6, pp.1004-1034.
 S. Amari, A. Cichocki and H.H. Yang, (1996) "A new learning algorithm for blind signal separation," Advances in Neural Information Processing System 8, MIT Press, pp.757-763.
- A. Hyvarinen and E. Oja, (1997) ''A fast fixed-point algorithm for independent con analysis," Neural Computation, vol. 9, pp. 1483-1492.

混合モデルの設定	
混合モデルの設定については、取り扱っている実際の応用 問題に応じて行うべきである、次の3種類の方式で原信号が混合 されることが多い、	
▼ 空間混合モデル(spatial mixture):	
 ● 脳活動から計測電極への転送路 	
♥時間的混合モデル(temporal mixture):	
 FILOADS 等化システムの転送路 	
▼ 時空間的混合モデル(spatio-temporal mixture):	
 ● FIRフィルタ行列 ● 会話音声からマイクへの音響転送路 	

時空間的混合モデルは複数個の信号源が現時点の値だけでなく、 過去の値も加えて複数の行列により混合されている。多人力多出 力にIMIのコンパリューションモデルとも増にれている。このモデル はカウテルバーデーの境を模倣にと声声分離やMIMOプランイド 等れなどによく使われている。

まとめ

- 行列係数.1が既知の場合には解を求めることは簡単である。
 現実では、係数.1が未知であり、また重み行列#を構成する係数の 可能な組み合わせ(は無数にあるため、上述の理想的な解を求める ことはほとんど不可能である。
- 自動的に重みWの調整・更新則(計算アルゴリズム)の設計が必要。
- どのように計算アルゴリズムを設計するか? どんな基準のもとで設計するか? 独立性って何か?

独立性の定義

- ・ n個の信号 y = (y₁y₂,...,y₂)⁽ (それぞれ>個のサンブルが持つ) を確率変数と、同時(結合)分布の密度関数をp(y)、周辺分布の 密度関数の(p)とする場合には、同時(結合)分布の密度関数が 周辺分布の密度関数の根と等しくなると、独立と定義される。 p,(y) = (1 p,(y.))
- 原信号が互いに独立と仮定されている。原信号が混合行列によって 混合され、独立性が崩れたま伝伝達され、観測信号になる、そこで、 観測信号を利用した変に信号の独立性を再構成すれば、原信号がも との独立性に戻ると考えられる。
- 独立性を再構成するために、ある目的関数での評価が必要。

独立性の基準

- Kullback-Leibler情報量: 分布の差を直接測る方法
- 最尤法: 重みの最尤推定量を求める方法
- 相互情報量の最小化: 2変数の場合には、Kullback-Leibler情報量と同じ、
- 2変数の場合には、Kuilback-Leibler情報量と同じ
- エントロビー最小化: 正規分布から離れた度合いの評価
- 情報量の最大化: 伝送路に雑音がある場合できるだけ情報量を大きくする方法.
- ★ 上記の基準がそれぞれ異なるが、導いたアルゴリズムはほぼ同じ
- 村田 昇: 独立成分解析 東京電機大学出版社, 2004年

その他の独立性評価基準

- 高次統計量による独立性の評価:
 1. 奇数次のクロスモーメントによる評価
 2. クロスキュムラントによる評価
- 2. クロスキュムラントによる評価
 非線形相関による独立性の評価

割	2. 一
	x=W ⁻¹ yを利用したエントロピーH(y iW)
	$H(\mathbf{y} \mathbf{W}) = H(\mathbf{x}) + \log \mathbf{W} $
	Kullback-Leibler情報量の可計算な評価関数
	$D(\mathbf{y} \mathbf{W}) = \sum_{i=1}^{n} H(y_i \mathbf{W}) - H(\mathbf{x}) - \log \mathbf{W} $
•	右端第一項のみは行列₩に制約されているため、K-L情報量の最小 化は、右端第一項の最小化と一致する。
*	エントロビー調整の性質により、エントロビーが最大となるのは不適定度が最大である。 分量が一度である年最分別、ロビールの分布のなかに、正開分を発行っ良分はそのエン トロビーが最近であり、正規分布を通っている分布を使っ成分の目がやなコントロビー が温暖かれる。また、合計エントロビーが最小になれば、各級分が互いに独立になると言 える。

 分布の形状を定める一つの 	カ規準としつ	ての尖度(kurtosis)は2次と4次の
中心モーメントを用いて	$r) = \frac{m_1(\gamma)}{m_1^2(\gamma)} - 3$	定義される。
 - はいまたこけ、使品の公本 		Unimodal distribution model
■ パル正ならは、信号の力中		- Pro terry-tailed did
と呼ばれる公布にたる 音声		(- 64, 198-0010 0)
信号はSuper-Gaussianである		V N
ことが多い。	à.	6
	and	1 8
 kが負ならば、信号の分布 	8	<i>M</i> N
(裾が軽い)はSub-Gaussianと	6	// N
呼はれ、画像信号などはこの		
性質を持つことが多い。		
■ 工程公本では (」 したる		

確率密度関数の近似法

- 直感的なスコア関数の選択方法(non-parametric法)に対して、 観測信号から計算された統計量(尖度:kurtosis)を用いて母数 を決定するparametricな方法がある。
- 一族分布の形を制御する係数を利用して、統計量の尖度(kurtosis) と結び付こうとしている。
- 単峰の形にしている一族分布のモデルを対象する。
 1.一般化された正規分布のモデル
 2. t-分布をモデル

安定性条件の導き
 スコア関数の微分 <i>φ</i>_i(y_i) = α(α-1)λ²_a λ_ay_i ^{s-2}
 安定性条件の要素の計算
$= E(y_1^2) + \int_{-\infty}^{\infty} y_1^2 g_1(y) dy + \frac{\alpha k_1}{m_{21}^2} \int_{-\infty}^{\infty} y^2 \exp\left(-(k_1y_1^2) dy + \frac{\alpha k_1}{m_{21}^2} + \frac{\alpha k_2}{\alpha k_1} + \frac{\alpha k_2}{k_1} + \frac{\alpha k_2}{m_{21}} + \frac{\alpha k_2}{k_1} + \frac{\alpha k_2}{m_{21}} + \frac{\alpha k_2}{k_1} + \frac{\alpha k_2}{k_2} + \frac{\alpha k_2}{k_1} + \frac{\alpha k_2}{k_1} + \frac{\alpha k_2}{k_2} + \frac{\alpha k_2}{k_2} + \frac{\alpha k_2}{k_1} + \frac{\alpha k_2}{k_2} + \frac{\alpha k_2}{k_1} + \frac{\alpha k_2}{k_2} +$
$= \mathcal{E}[\hat{\psi}(\boldsymbol{\gamma}_{i})] - \int_{-}^{1} \hat{\psi}(\boldsymbol{\gamma}_{i})p_{i}(\boldsymbol{\gamma}_{i})p_{i}(\boldsymbol{\gamma}_{i})p_{i}(\boldsymbol{\gamma}_{i})p_{i}(\boldsymbol{\gamma}_{i})p_{i}^{-1} \exp(-i\boldsymbol{\lambda}_{i}\boldsymbol{\gamma}_{i})p_{i}(\boldsymbol{\gamma}_{i$
$= \mathcal{E}[r_{i}^{2} \varphi_{i}(x_{i})] + \int_{a}^{a} r_{i}^{2} \varphi_{i}(x_{i}) \rho_{i}(x_{i}) \phi_{i}(x_{i}) - \frac{\varphi_{i}^{2} \varphi_{i}^{2}(\alpha - 1)}{\Pi_{a}^{\frac{1}{2}} \gamma_{a}^{2}} \int_{a}^{a} r^{2} \exp(-i(\lambda_{i})r) dy - \frac{\varphi_{i}^{2} \varphi_{i}^{2}(\alpha - 1)}{\Pi_{a}^{\frac{1}{2}} \gamma_{a}^{2}} - \frac{\pi_{a}^{2}}{\pi_{a}^{2}} - \alpha - 1$
$= \mathbb{E}[r^2]\mathbb{E}[q_i(r_i)] - \frac{\alpha(\alpha-1)\Gamma(\frac{3}{\alpha})\Gamma(\frac{\alpha-1}{\alpha})}{\Gamma^2(\frac{1}{\alpha})} =$

■Case I: α > 2 sub-Gaussianの信号に対して,条件①-③は常に満たされている.

BU Unine Elay 2:0 = 2 Ganasine 専門に対して、条件①ージが常に添たされている。条件② において は、澤目の専門に対して③これであるので、仮にもう一つの信号(連目)も近 は、澤目の専門に対して③これであるので、仮にもう一つの信号(連目)も近 されていない、でのこれは、毎日、POGmeeningの特徴の**できたけする。これで 対策ないことを形している。** にあい、キャットので見合いであった。 は、そ件③ (つりが満たされている。

Case 3: α < 2 exper-Gaussianの信号に対して、条件①-③は常に満たされていることではない。例えば、α =02.05.のとき、条件①-③にあるGamma回数が不道続である。

★ 安定性を満たすための他のモデルがあるか?

t-分布の安定性条件の導き1
 t-分布によるスコア関数の微分 (j, j) - (1+ 府JK y²) (y² + e)¹
 安定性条件の要素の計算
$\mathcal{E}(p^{2}) = \int_{-\infty}^{\infty} p^{2} p_{2}(x) dy = \int_{-\infty}^{\infty} p^{2} r_{2}(1 + \frac{y^{2}}{\beta})^{-\frac{1}{2} \beta + \alpha \beta} dy = 2r_{2} e^{\frac{1}{2} \beta + \alpha} \left[\frac{1}{e^{\sigma^{2}}} \sum_{i=2}^{\infty} \frac{(-1)^{i+1}}{e^{\sigma^{2}}} S_{-i}^{i} C_{-i}(\frac{y}{\sqrt{\gamma^{2} + e^{\sigma}}}) \right]_{0}^{i}$
$\sum_{r=n}^{\infty} \frac{c_r(r)}{r(n-r)} \cdot \frac{\Gamma(n+1)\Gamma(n)}{\Gamma(n-n-1)}$
$d[c], \frac{g(\frac{d-2}{2})}{2d(\alpha_2^2)}$

t-分布モラ	「ルの安定条件 ^{を利用する時の安定性条件:}
▼ 条件①	$E[\varphi_i(y_i)] = \frac{\lambda_p^2(\beta+1)}{\beta+3} > 0$
▼ 条件②	$E[y_{i}^{2}\phi_{i}(y_{i})]+1-\frac{2\beta}{\beta+3}>0$
▼ 条件③	$-E[\gamma_{i}^{2}]E[\psi_{i}(\gamma_{i})] - 1 - \frac{\beta(\beta+1)\Gamma(\frac{\beta-2}{2})}{2(\beta+3)\Gamma(\frac{\beta}{2})} > 0$

t-分布モデルの安定性検証

- beta>2のsuper-Gaussianの信号に対して、条件①-③は常に満たされている。
- betaが無限大につれ、条件③が1に近づくこの場合には信号が正規分布となる。
- ★ 安定性が満たされているモデルの構成
 1. 一般化された正規分布のモデル(sub-Gaussian)
 2. t-分布をモデル(super-Gaussian)

A hanned #E1++198 A hanned #E1++198	
subplot (2, 2, 4) :plot(x(2, :)) :	clcimmt(')(1, //mct(y(1, /)));

画像復;	元の実行結	果	
Tierre 7r(3/2) S	No.1 副王田 表示12 挿入目 2~14(1) 24	1718) 16718	
0 📽 🖬	BANNAPPO		
	le Crenel mare 0	6) Orienal Insee (2	
	C Mored Image ①	6 Mined insee @	
	6) Pecovered inset (3)	© Recovered instance ©	
			J

公開されているICAプログラム

- 情報量最大化算法(Infomax)
- 行列同時対角化算法(JADE) http://sig.enst.fr/~cardoso/join diag.html
- 不動点法(FastICA) http://www.cis.hut.fi/~aapo/
- 多種多様な計算アルゴリズム http://www.bsp.brain.riken.jp/ICALAB

I CALABツールボックス

■ ICALABソールボックスは運化学研究所脳研解信号処理研究テーム開発され、画像処理、信号処理、ECAUAEC 信号解析からなる3つの独立と MaTLAB のソフトウエアーバッケージである。ICAAAB には多くの違力なア ルゴリズムが実装されている。ICAOの他に、感望予測性やスムースネスや希 数にたなどの違果に基づいたプラインド度商業の増加さなが実装されている。 一番の違みは、様々な長折や短所をもつ強力なパッチアルゴリズムを一同 に公開している点である。

■ ICALABの入手には、理化学研究所脳研脳信号処理研究チームのHP http://www.bsp.brain.riken.jp/ICALAB/でダウンロードするのは可能です.

■ ICALABのインストール方法についでは、MATLAB主メニューの中、バ スの設定のボタンを押して、解凍されたICALABのフォールダーをバスに増 加すれば、インストール完了です。

Band and 1020-012 in Signal Processing	Draphaening
ICAI AR In: Signal Processing	Preprocessing Options
Sector Levits, ESS, ESS	(Instituted Up Spectra
Submeries and a Subface statements	In Amounty Annual Annual Amounty and Amounty a Amounty and Amounty
Implay Advanced parameters	Constant Description and American
In ThilDiver signific	A Rectines
Ku di Ana Tradici P 2000 10 1000	Preprocessing Options
No 2 and 1000 and 10000 and 1000 and 10	Passana Asside
10.010300000	Converse fair (0 in one)
Agente al Traditional Station and Agente al Stational Statio	K and the second
and south south south south	a the second second second
	Anterior and Anterior Anterior
Corpor Algorith	Contract Descent 1 Contract (0.00)
No P statement Part Part - Bare	Contraction Contraction
PHF ORI HH	
	Charles Representation (Reveal agent

Ⅲ_1 ICAによるMEG信号処理
1. 脳破界(MEG) - 脳計測について - 信号源と雑音源

2.無相関化及び
維音低減方法 ・主成分解析法

- アルコリスム
 8. MEG信号処理の事例
 Phantomデータ解析例
 ヒトの聴覚刺激による反応の動態情報の可視化

2

武田常広: 「脳工学」コロナ社 2003.4

- 3
- 監抜(EEG: Electroencephalography) 神経細胞の活動により流れている電流を、頭皮上に置く電極を通して記録する。 独立成分解析によるデータ解析の典型例として盛んに研究されている。

<image><image>

MEG実測データ例 🛛 🛞		
13Hz正弦波が信号源として計測されている 1st single-fieldate in phantom experiment	場合: Fissinglo-mill phonom das	
Time (pos.)	100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	

CAによるMEG信号解析	
loisy model : $\mathbf{x}(t) = \mathbf{As}(t) + \mathbf{e}(t), \ t = 0,1,\cdots$	
Math. definition	Specification
$\mathbf{x} = [x_1, \cdots, x_m]^T$	CTF 64-Channel SQUID 観測信号
$\mathbf{A} = (a_{ij})$	i-番目の信号源からj-番目センサへの距離 に関する係数行列
$\mathbf{s} = [s_1 \cdots s_n]^T$	共通成分 (信号源:雑音源を含む)
, ⁰ ⁿ	

株音がある場合の信号分離 ● 雑音がある場合の信号分離 ● 雑音がある場合の復元信号と原信号の関係: (y(r) = WA(x(r) + WS(r)) - 重み行列の推定が買しい. ■ いん規範の前に、予約者音の取り取らあるいは雑音パワーを振減させる方法は有効(現実的)と考えられる.

	,	Signal processing		Device Comma	nds
	EEG data acquisition	Preprocessing and denoising	Feature entraction and selection	Control interface device controller	Computer, Switches, Wheekchairs
• EEC	に基づいた	BCI生理実	験		
• EEC	データ採集	hn Im L M# 301	⊳ +		
・ EEC	抽出と分類	処理と相目	际五		
・装置	制御インタフ	フェース			
 装置 	の制御				

BCI実験課題(P300)

■ P300反応 (oddball課題)

- P300とは2種類以上の感覚刺激による引き起こした陽性電位の反応
- ■反応時間:約250~500msec
 ■刺激:聴覚・視覚・体性感覚・臭覚・味覚などの感覚刺激
- 利加・協定・決定・ドロビル・実施・パルルマンの必定利加
 刺激呈示頻度:2 vs.8(低頻度の刺激を被除者に選択的に注意させる)
- ■刺激間隔:約0.5秒

■一試行間隔:1—2 or 3 秒

41 0		42 500
41.30	E. EMER ENDS ENDS ENDS ENDS 1	+ 42 300
	The factor of the second second	
	· War the first faith and the second and the second	And a second state
	With the second of the second	C. C
	 A second s	TAL WALL
	and and the state of the state	the months and
		C4 C4 1 0 20
	- March March March Star March	Annestation
Heart heating	10 1 11 10 10 10 10 10	" " L "
neur bealing	2 3 person proving prairies from the second	and marchine
	A REAL OF MANY AND AND A REAL PROPERTY OF A REAL PR	Mar agan .
	bounded other court for the set	1 77 PT 1 10W
	della manufacture and a second and a second	when when we have
		- all , et al. Officialities

	no.	gender	age	extracted brain waves	
	1	male	18	δ-wave, θ-wave, α-wave	
	2	male	40	0-wave	
	3	male	85 65	0-wave, o-wave	
				0-wave	
	- 5	female	64	0-wave	
	6	female	23	8-wave	
	7	male	48	0-wave	
	8	female	17	a-ware	
	9	male	18	δ-wave, θ-wave	
	10	male female male female male	66 84 79 48 73 64	θ-wave δ-wave, θ-wave, α-wave, β-wave θ-wave	
	11				
	12				
	13			0-wave, o-wave	
	14			8-wave 8-wave, o-wave	
	15				
	16	male	83	S-wave, 0-wave	
	17	female	67	8-wave, o-wave	
	18	female	82	8-wave	
	19	male	37	A-wave	

