テーマ O04： 陽解法による偏微分方程式の数値解法

1. 偏微分方程式の種類
代表的な偏微分方程式には、次の3種類があります。

① \(\frac{\partial^2 f(x, y)}{\partial x^2} + \frac{\partial^2 f(x, y)}{\partial y^2} = \rho(x, y) \) Poisson 方程式（楕円型偏微分方程式）
ただし、\(\rho(x, y) = 0 \) のとき \(\frac{\partial^2 f(x, y)}{\partial x^2} + \frac{\partial^2 f(x, y)}{\partial y^2} = 0 \) Laplace 方程式

② \(\frac{\partial f(x, t)}{\partial t} = a \frac{\partial^2 f(x, t)}{\partial x^2} \) Fourier の熱伝導方程式（放物型偏微分方程式）

③ \(\frac{\partial^2 f(x, t)}{\partial t^2} = a^2 \frac{\partial^2 f(x, t)}{\partial x^2} \) 波動方程式（双曲型偏微分方程式）

2. 差分近似
2-1. 導関数の近似法
テイラー展開を利用すると、導関数を四則演算で構成される差分式で近似することができます。これを差分近似といいます。近似法の代表的なものは、中心差分近似、前進差分近似、後退差分近似の3種類があります。

![関数の差分化](image)

① 中心差分近似
1 階∂関数
\[\frac{du}{dx} \approx \frac{1}{2h} \{ f(x+h) - f(x-h) \} = \frac{u_{i+1} - u_{i-1}}{2h} \] 異差 \(-\frac{1}{6} h^2 f'''\)

2 階∂関数
\[\frac{d^2u}{dx^2} \approx \frac{1}{h^2} \{ f(x+h) - 2f(x) + f(x-h) \} = \frac{u_{i+1} - 2u_i + u_{i-1}}{h^2} \] 異差 \(-\frac{1}{12} h^4 f''''\)

② 前進差分近似
1 階導関数
\[\frac{du}{dx} \approx \frac{1}{h} \{ f(x + h) - f(x) \} = \frac{u_{i+1} - u_i}{h} \quad \text{誤差} - \frac{1}{2} hf'' \]

2 階導関数
\[\frac{d^2u}{dx^2} \approx \frac{1}{h^2} \{ f(x + 2h) - 2f(x + h) + f(x) \} = \frac{u_{i+2} - 2u_{i+1} + u_i}{h^2} \quad \text{誤差} - hf''' \]

③ 後退差分近似

1 階導関数
\[\frac{du}{dx} \approx \frac{1}{h} \{ f(x) - f(x - h) \} = \frac{u_i - u_{i-1}}{h} \quad \text{誤差} - \frac{1}{2} hf'' \]

2 階導関数
\[\frac{d^2u}{dx^2} \approx \frac{1}{h^2} \{ f(x) - 2f(x - h) + f(x - 2h) \} = \frac{u_i - 2u_{i-1} + u_{i-2}}{h^2} \quad \text{誤差} - hf''' \]

2-2. 1次元 Fourier の熱伝導方程式の陽解法

陽解法は、1 ステップ前の計算時刻における既知の値のみを用いて、次の時刻における値を計算する方法です。陽解法は Fourier の熱伝導方程式に適用できる便利な数値解法です。

1次元の Fourier の熱伝導方程式を例に解き方を説明します。

1次元非定常温度分布を \(\theta = f(x,t) \) としたとき、熱伝導方程式は次式で表されます。

\[\frac{\partial \theta}{\partial t} = a \frac{\partial^2 \theta}{\partial x^2} \]

時間 \(t \) に関する偏微分には、前進差分近似を適用します。また、x 座標に関する偏微分には、中心差分近似を適用します。結果は次式となります。添え字の \(i \) は空間刻みの番号を表わし、\(i \) の位置に対して、\(i-1 \) は左隣りの位置、\(i+1 \) は右隣りの位置を意味します。添え字の \(n \) は時間刻みの番号を表わし、\(n+1 \) は \(n \) に対して 1 ステップ後の計算時刻における値になります。

\[\frac{\theta_{i,n+1} - \theta_{i,n}}{\Delta t} = a \frac{\theta_{i+1,n} - 2\theta_{i,n} + \theta_{i-1,n}}{\Delta x^2} \]

差分近似式を変形すると、新しい時間の値 \(u_{i,n+1} \) に関し、次式が得られます。

\[\theta_{i,n+1} = a \frac{\Delta t}{\Delta x^2} (\theta_{i+1,n} - 2\theta_{i,n} + \theta_{i-1,n}) + \theta_{i,n} \]

次の図のように、空間軸を横軸に、時間軸を縦軸にして表わした図を計算格子といいます。

この図で、\(i \) の位置における新しい時刻 \(n+1 \) の値 \(\theta_{i,n+1} \) を得るには、現在の時刻における \(\theta_{i-1,n} \),
\(\theta_{i,n}, \theta_{i+1,n} \) を使えばよく、これら 3 つの値は既知であることから、この解法は陽解法と呼ばれてています。

![計算格子](image)

図 2 計算格子

\(a \frac{\Delta t}{\Delta x^2} \) の値が大きくなると解の不安定や発散が発生するため注意が必要になります。解の安定条件は

\[
a \frac{\Delta t}{\Delta x^2} \leq \frac{1}{2}
\]

です。解の安定性以外にも、解の精度が重要です。計算誤差は、\(\Delta t \) と \(\Delta x^2 \) に関係しており、精度を上げるには、これらを共に小さくする必要があります。

例題
次の Fourier の偏微分方程式で表される 1 次元温度場の平行平板内の温度変化を求めよ。ただし、刻み幅は \(\Delta t = 1, \Delta x = 1 \) とする。

\[
\frac{\partial \theta}{\partial t} = a \frac{\partial^2 \theta}{\partial x^2}
\]

ただし、温度伝導率 \(a = \frac{1}{2} \)

境界条件 \(\theta(0,t) = \theta(4,t) = 20 \)

初期条件 \(\theta(x,t) = 5x(x - 4) + 20 \)

解答
差分化式は

\[
\frac{\theta_{i,n+1} - \theta_{i,n}}{\Delta t} = \frac{1}{2} \frac{\theta_{i+1,n} - 2\theta_{i,n} + \theta_{i-1,n}}{\Delta x^2}
\]

\(\Delta t = 1, \Delta x = 1 \) なので
\[
\begin{align*}
\theta_{i,n+1} - \theta_{i,n} &= \frac{1}{2}(\theta_{i+1,n} - 2\theta_{i,n} + \theta_{i-1,n}) \\
\theta_{i,n+1} &= \frac{1}{2}(\theta_{i+1,n} - 2\theta_{i,n} + \theta_{i-1,n}) + \theta_{i,n} \\
\theta_{i,n+1} &= \frac{1}{2}(\theta_{i+1,n} + \theta_{i-1,n})
\end{align*}
\]

境界条件と初期条件から
\[
\begin{align*}
\theta_{0,0} &= 20, & \theta_{1,0} &= 5, & \theta_{2,0} &= 0, & \theta_{3,0} &= 5, & \theta_{4,0} &= 20
\end{align*}
\]

\(t=1\) では
\[
\begin{align*}
\theta_{1,1} &= \frac{1}{2}(\theta_{2,0} + \theta_{0,0}) = \frac{1}{2}(0 + 20) = 10 \\
\theta_{2,1} &= \frac{1}{2}(\theta_{3,0} + \theta_{1,0}) = \frac{1}{2}(5 + 5) = 5 \\
\theta_{3,1} &= \frac{1}{2}(\theta_{4,0} + \theta_{2,0}) = \frac{1}{2}(20 + 0) = 10
\end{align*}
\]

\(t=2\) では
\[
\begin{align*}
\theta_{1,2} &= \frac{1}{2}(\theta_{2,1} + \theta_{0,1}) = \frac{1}{2}(5 + 20) = 12.5 \\
\theta_{2,2} &= \frac{1}{2}(\theta_{3,1} + \theta_{1,1}) = \frac{1}{2}(10 + 10) = 10 \\
\theta_{3,2} &= \frac{1}{2}(\theta_{4,1} + \theta_{2,1}) = \frac{1}{2}(20 + 5) = 12.5
\end{align*}
\]

以下同様に、計算を繰り返していきます。

Excel の表計算を用いることにより簡単に計算を行うことができます。\(n=7\) までの計算結果をまとめると、次表のようなになります。黄色の部分は固定値で、緑の部分が計算される領域です。\(n\) の並びが上から下方向になることに注意して下さい。ここで、C3 セルの式は次のとおりです。

\[
C3=(B2+D2)/2
\]
この数式をコピーし、緑の領域全部に張り付ければ完成です。
2-3. 2次元 Fourier の熱伝導方程式の陽解法

2次元非定常温度分布を \(\theta = f(x,y,t) \) としたとき、熱伝導方程式は次式で表されます。

\[
\frac{\partial \theta}{\partial t} = a \left(\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} \right)
\]

これを差分近似したものが次式です。

\[
\frac{\theta_{i,j,n+1} - \theta_{i,j,n}}{\Delta t} = a \left(\frac{\theta_{i+1,j,n} - 2\theta_{i,j,n} + \theta_{i-1,j,n}}{\Delta x^2} + \frac{\theta_{i,j+1,n} - 2\theta_{i,j,n} + \theta_{i,j-1,n}}{\Delta y^2} \right)
\]

ただし、\(i, j, n \) はそれぞれ、\(x, y, t \) の刻み番号です。\(\theta_{i,j,n+1} \)は次式で計算できます。

\[
\begin{align*}
\theta_{i,j,n+1} &= \frac{a\Delta t}{\Delta x^2} \left(\theta_{i+1,j,n} - 2\theta_{i,j,n} + \theta_{i-1,j,n} \right) + \frac{a\Delta t}{\Delta y^2} \left(\theta_{i,j+1,n} - 2\theta_{i,j,n} + \theta_{i,j-1,n} \right) + \theta_{i,j,n}
\end{align*}
\]

解の安定条件は、次の両方の条件を同時に満たすことです。

\[
\frac{a\Delta t}{\Delta x^2} \leq \frac{1}{2} \quad \text{and} \quad \frac{a\Delta t}{\Delta y^2} \leq \frac{1}{2}
\]
2-4. 3次元 Fourier の熱伝導方程式の陽解法

3次元非定常温度分布を \(\theta = f(x, y, z, t) \) としたとき、熱伝導方程式は次式で表されます。

\[
\frac{\partial \theta}{\partial t} = a \left[\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} + \frac{\partial^2 \theta}{\partial z^2} \right]
\]

これを差分近似したものが次式です。

\[
\frac{\theta_{i,j,k,n+1} - \theta_{i,j,k,n}}{\Delta t} = a \left(\frac{\theta_{i+1,j,k,n} - 2\theta_{i,j,k,n} + \theta_{i-1,j,k,n}}{\Delta x^2} + \frac{\theta_{i,j+1,k,n} - 2\theta_{i,j,k,n} + \theta_{i,j-1,k,n}}{\Delta y^2} + \frac{\theta_{i,j,k+1,n} - 2\theta_{i,j,k,n} + \theta_{i,j,k-1,n}}{\Delta z^2} \right)
\]

ただし、\(i, j, k, l \) はそれぞれ、\(x, y, z, t \) の刻み番号です。\(\theta_{i,j,k,n+1} \) は次式で計算できます。

\[
\theta_{i,j,k,n+1} = \frac{a\Delta t}{\Delta x^2} \left(\theta_{i+1,j,k,n} - 2\theta_{i,j,k,n} + \theta_{i-1,j,k,n} \right) + \frac{a\Delta t}{\Delta y^2} \left(\theta_{i,j+1,k,n} - 2\theta_{i,j,k,n} + \theta_{i,j-1,k,n} \right) + \frac{a\Delta t}{\Delta z^2} \left(\theta_{i,j,k+1,n} - 2\theta_{i,j,k,n} + \theta_{i,j,k-1,n} \right) + \theta_{i,j,k,n}
\]

解の安定条件は、次の 3つの条件をすべて満たすことです。

\[
\frac{a\Delta t}{\Delta x^2} \leq \frac{1}{2}, \quad \frac{a\Delta t}{\Delta y^2} \leq \frac{1}{2} \quad \text{and} \quad \frac{a\Delta t}{\Delta z^2} \leq \frac{1}{2}
\]

Copyright © 2011, 2013 小西克享, All Rights Reserved.
個人的な学習の目的以外での使用、転載、配布等はできません。
お願い：本資料は、埼玉工業大学在学生の学習支援を目的として公開しています。本資料の内容に関する本学在学生以外のご質問・ご要望にはお答えできません。